矩阵与坐标系的关系

矩阵在几何学中常用于表示坐标系的变换。向量可以被解释为一系列沿着轴的位移,通过矩阵乘法可以实现这些位移的组合。基向量,如笛卡尔坐标轴的+x,+y,+z方向,构成3x3矩阵,乘以向量即可完成坐标转换。矩阵的本质是坐标转换的紧凑表达,线性代数的矩阵运算能方便地实现复杂的几何变换。
摘要由CSDN通过智能技术生成

向量在几何上能被解释成一系列与轴平行的位移。如向量[1,-3,4]能被解释成位移[1,0,0],随后位移[0,-3,0],最后位移[0,0,4]。

将这个位移序列解释成向量的加法为:

\begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} + \begin{bmatrix} 0\\ -3\\ 0 \end{bmatrix} + \begin{bmatrix} 0\\ 0\\ 4 \end{bmatrix}

一般来说,任意向量v都能写为“扩展”形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值