【论文笔记】Multi-view Contrastive Graph Clustering

创新点

1. 图对比正则化器(GCR)

  • 引入了 Graph Contrastive Regularizer,在图矩阵 S 上引入对比学习:
    • 直接作用于图的几何结构,拉近正样本对(k-最近邻节点),分离负样本对(非邻居节点)。
    • 强化了图的区分性,显著提升图聚类的效果。
    • 相比传统基于节点特征的对比学习,首次在图级别应用对比正则化。

2. 动态视图权重学习

  • 动态优化视图权重 ,使不同视图对最终图矩阵 S 的贡献按需调节:
    • 自动调整每个视图的重要性,解决了视图信息不一致的问题。
    • 引入正则化项,防止某些视图权重过大,提升多视图融合的鲁棒性。

3. 图滤波与优化

  • 提出了结合 图滤波(Graph Filtering) 的图矩阵学习方法:
    • 对多视图的特征进行平滑,去除噪声,同时保留图的几何结构。
    • 优化过程中采用交替优化策略,通过梯度下降动态更新 S 和 \lambda^{v},提升优化效率和效果。

4. 共识图与聚类

  • 生成一个综合所有视图信息的 共享共识图 S
    • 消除视图之间的矛盾,通过对称化处理提升图的质量。
    • 使用对称化的 S 进行聚类,显著提高了聚类任务的性能。

Graph Filtering(图滤波):

1. 基本概念

图滤波的背景来源于信号处理:在图中,节点特征可以看作是图信号(每个节点的特征就是信号值),而邻接关系定义了信号传播的路径。滤波的目标是让信号在相邻节点之间更加平滑。

在本文中,假设有一个特征矩阵 X\in R^{n \times d},它包含 N个节点的 d-维特征。图滤波的目标是从 X 中计算一个平滑后的特征矩阵 H。

2. 平滑的定义

我们希望特征 H 满足两个条件:

  1. 接近原始特征:H 不应偏离 X 太远;
  2. 局部平滑:在图的结构上,邻近的节点应该有相似的特征。

为了实现这两个目标,定义了一个优化问题:

\min_H \| H - X \|_F^2 + s \, \text{Tr}(H^\top L H)

其中:

  • \| H - X \|_F^2:约束 HH 不偏离原始特征 XX;
  • \text{Tr}(H^\top L H):图拉普拉斯正则化项,鼓励相邻节点的特征相似;
  • s>0:平衡两个目标的超参数;
  • L=I−A:图拉普拉斯矩阵,AA 是归一化邻接矩阵。

3. 解析解

通过对优化目标函数对 HH 求导,并令导数为零,可以得到解析解:

H = (I + sL)^{-1} X

其中:

  • I 是单位矩阵;
  • sL 是图的拉普拉斯项,用来平滑信号。

这个公式表示,我们需要对 X 应用一个滤波器 (I + sL)^{-1}

4. 简化计算

直接求解 (I + sL)^{-1}涉及矩阵求逆,计算代价高。为了简化计算,采用一阶泰勒展开近似:

H = (I - sL) X.

这一近似的直观理解是:I−sL的作用类似于一个低通滤波器,去除高频噪声。

更进一步,如果希望进行更深层次的平滑,可以使用 m-阶滤波:

H = (I - sL)^m X

其中 m 是滤波的阶数,表示应用 (I−sL)的次数。

5. 图滤波的作用

  • 去噪:高频信号通常对应于噪声或异常值,通过图滤波可以抑制这些高频成分。
  • 保留结构:图滤波保留了节点与其邻居之间的关系,使得平滑后的特征依然能反映图的几何结构。
  • 灵活性:通过调整 s 和 m 可以控制滤波的强度。

6. 图滤波的实际意义

  • 如果 s 太大,可能导致过度平滑,节点特征趋于均值;
  • 如果 s 太小,则噪声无法有效去除;
  • m 决定了滤波的深度,太高可能导致过度计算,太低可能无法完全去噪。

通过图滤波,本文的模型可以生成更平滑的特征表示 H,为后续的图学习和聚类提供了更可靠的输入。

不完整(噪声)处理

1. 背景与动机

在实际场景中,初始图(例如通过邻接矩阵 A 表示的图结构)可能包含噪声、不完整或不准确的信息。如果直接使用初始图数据进行聚类,可能会导致结果的性能下降。因此,本文提出了一种从平滑表示 H 中学习优化图 S 的方法。

单视图图学习

\min_S \| H - HS \|_F^2 + \alpha \| S \|_F^2

公式分析
  1. 符号含义

    • H:节点的平滑特征表示。
    • S:学习到的图矩阵,表示节点之间的关系。
    • \| H - HS \|_F^2:重构误差,表示通过 SS 重建 HH 的能力。
    • \alpha \| S \|_F^2:正则化项,限制 SS 的大小,避免过拟合。
    • α>0:平衡重构误差与正则化的超参数。
  2. 公式的含义

    • 第一项\| H - HS \|_F^2:希望 S 能很好地重构 H,即通过 S 建立的节点关系能够反映出节点的特征分布。
    • 第二项 \alpha \| S \|_F^2:引入正则化约束,限制 S 的复杂度,避免权重值过大或过拟合。
  3. 目标

    • 学习一个 S,使其既能准确表达 H 的关系,又能保持足够的简洁性和鲁棒性。
  4. 优化过程

    • 通过迭代更新 S,最小化目标函数,使得 S 能够捕捉节点之间的关系。

多视图图学习

\min_S, \lambda_v \sum_{v=1}^V \lambda_v \| H^v - H^v S \|_F^2 + \alpha \| S \|_F^2 + g(\lambda_v)

公式分析
  1. 符号含义

    • V:视图的数量。
    • H^{v}:第 v 个视图的节点特征表示。
    • \lambda ^{v}:第 v 个视图的权重。
    • \sum_{v=1}^V \lambda_v \| H^v - H^v S \|_F^2:多视图的重构误差项。
    • \alpha \| S \|_F^2:图矩阵 S的正则化项。
    • g(\lambda_v):权重正则化项,防止某个视图的权重过大。
  2. 公式的含义

    • 第一项 \sum_{v=1}^V \lambda_v \| H^v - H^v S \|_F^2:对所有视图进行加权重构误差最小化,每个视图的权重 λv决定了其对共识图 SS 的贡献。
    • 第二项 \alpha \| S \|_F^2:限制 S 的复杂度,防止 S 的值过大,同时提升其泛化能力。
    • 第三项 g(\lambda_v):防止某个视图的权重 \lambda ^{v} 过大,确保所有视图的信息被合理利用。
  3. 目标

    • 学习一个统一的图矩阵 S,能够有效融合所有视图的信息。
    • 学习视图权重 \lambda ^{v},自动调整各视图的重要性。
  4. 优化过程

    • 交替优化 S 和 \lambda ^{v}
      • 固定 \lambda ^{v}​​​​​​​:优化 S,使其能够尽可能重构所有视图的 H^{v}
      • 固定 S:优化 \lambda ^{v},根据视图的贡献动态调整其权重。
    • 不断迭代,直到收敛,最终得到一个高质量的 S 和合理的 \lambda ^{v}

两者的联系与区别

  1. 联系

    • 两个公式的核心思想一致:通过最小化重构误差来学习图矩阵 S。
    • 都引入正则化项,限制 S 的复杂度,提升模型的泛化能力。
  2. 区别

    • 单视图公式仅考虑一个 H,目标是学习单视图的 S。
    • 多视图公式融合了多个 H^{v},通过加权的方式整合各视图信息,并且需要同时学习视图权重 \lambda ^{v}

图对比正则化器

图对比正则化器的目标是:

  1. 拉近正样本对(邻居节点):让相邻节点的关系更紧密;
  2. 分离负样本对(非邻居节点):减少不相关节点之间的关系权重。

通过在图矩阵 S 上应用对比正则化器,增强图的质量,使其更适合后续的聚类

  • 传统对比学习

    • 对比学习一般在实例级别进行,通过数据增强构造正/负样本对。
    • 目标是最大化正样本对之间的相似性,最小化负样本对之间的相似性。
  • 在图上的应用

    • 传统方法通常对节点或边进行随机扰动,学习节点的表示。
    • 本文的方法不同:通过 k-最近邻 (kNN) 在图上定义正样本对,直接在图矩阵 S 上应用对比学习,而不是节点特征 H。

实现步骤

Step 1:正负样本的定义
  • 正样本对:每个节点 i 及其 k-最近邻节点(kNN) j,构成正样本对 (i,j)。优化目标是最大化正样本对的相似性 Sij。
  • 负样本对:其他所有非邻居节点(不属于 k-最近邻集合的节点),构成负样本对 (i,p)。优化目标是最小化负样本对的相似性 S_{ip}

这些样本对的定义基于节点间的几何关系,通过 k-最近邻方法获取。

Step 2:对比学习目标函数

对比正则化器的目标函数 J 为:

J = -\sum_{i=1}^{N} \sum_{j \in N_i} \log \frac{\exp(S_{ij})}{\sum_{p \neq i} \exp(S_{ip})}

  • S_{ij}:节点 i 和节点 j 在图矩阵 S 中的关系强度。
  • Ni:节点 i 的 k-最近邻集合。
函数解析
  1. 分子 exp⁡(S_{ij})

    • 表示节点 i 和 j 的关系强度,经过指数化后值范围更适合优化。
    • 优化目标是让正样本的关系权重更高。
  2. 分母 \sum _{p\neq i}exp(S_{ip})

    • 表示节点 ii 与所有其他节点(包括正样本和负样本)的关系强度总和。
    • 通过优化使非邻居节点(负样本)的权重降低。
  3. 对数函数 log⁡

    • 对比学习的核心,类似于交叉熵损失。
    • 在优化过程中,拉大正样本与负样本之间的区分度。

完整优化目标

\min_{S, \lambda} \sum_{v=1}^{V} \lambda^v \left( \left\| H^v - H^{vT} S \right\|_F^2 + \alpha \sum_{i=1}^{N} \sum_{j \in N_i^v} -\log \frac{\exp(S_{ij})}{\sum_{p \neq i} \exp(S_{ip})} \right) + \sum_{v=1}^{V} (\lambda^v)^\gamma

逐部分解析

重构误差

\left\| H^v - H^{vT} S \right\|_F^2

                \left\| H^v - H^{vT} S \right\|_F^2:衡量 S 在第 v 个视图上重构平滑表示 H^{v} 的能力。\lambda ^{v}:视图 v 的权重,表示该视图的重要性。

             对比正则化器

  1. \alpha \sum_{i=1}^{N} \sum_{j \in N_i^v} -\log \frac{\exp(S_{ij})}{\sum_{p \neq i} \exp(S_{ip})}

  2. α:对比正则化的平衡参数,控制对比学习在优化目标中的重要性。

        这部分通过拉近正样本关系、分离负样本关系,提高图矩阵 S 的质量。

  1. 视图权重正则化

\sum_{v=1}^{V} (\lambda^v)^\gamma

                \lambda^{v}:每个视图的权重,动态调整视图的重要性。

                γ>1:平衡参数,防止某个视图权重过大而导致其他视图信息被忽略。

公式目标

综合来看,上述公式的目标是:

  1. 通过重构误差学习图矩阵 S:使 S 能够同时重构多个视图的平滑表示 H^{v}
  2. 通过对比正则化提升区分能力:增强正样本对的关系强度,削弱负样本对的关系。
  3. 动态调整视图权重 \lambda^{v}:根据每个视图对优化目标的贡献动态分配权重,提升多视图融合效果。

优化过程详解

优化上述公式需要同时处理两个变量:

  1. 图矩阵 S
  2. 视图权重 \lambda^{v}

直接优化这两个变量比较困难,因此采用 交替优化策略

  • 固定 \lambda^{v},优化 S;
  • 固定 S,优化 \lambda^{v}

第一步:固定\lambda^{v} ,优化 S

目标函数在固定 \lambda^{v} 时,可以写成:

\min_S \sum_{v=1}^V \lambda^v \left( \| H^{v \top} - H^{v \top} S \|_F^2 + \alpha \sum_{i=1}^N \sum_{j \in N_i^v} -\log \frac{\exp(S_{ij})}{\sum_{p \neq i} \exp(S_{ip})} \right)

梯度计算

为了优化 S,采用梯度下降法。目标函数对 S 的梯度分为两部分:

\nabla^{(t)} = \nabla_1^{(t)} + \alpha \nabla_2^{(t)}

  • 第一项 ∇1(t)∇1(t)​:重构误差的梯度

    \nabla_1^{(t)} = 2 \sum_{v=1}^V \lambda^v \left( -H^v H^{v \top}_{ij} + H^v H^{v \top} S_{ij}^{(t-1)} \right)

  • 第二项 ∇2(t)∇2(t)​:对比正则化的梯度

    \nabla_2^{(t)} = \begin{cases} \sum_{v=1}^V \lambda^v \left( -1 + \frac{n \exp(S_{ij}^{(t-1)})}{K^{(t-1)}} \right), & \text{if } j \in N_i^v, \\ \sum_{v=1}^V \lambda^v \frac{n \exp(S_{ij}^{(t-1)})}{K^{(t-1)}}, & \text{otherwise}. \end{cases}
  • N_{i}^{v}:节点 i 在第 v 个视图中的 k-最近邻。
  • K^{(t-1)} = \sum_{p \neq i} \exp(S_{ip}^{(t-1)}):节点 i 的所有邻居关系总和。

这部分来自对比正则化项,通过提升正样本相似性、降低负样本相似性优化 S。

更新规则

利用 Adam 优化器更新 S,使其逐渐接近最优解。

第二步:固定 S,优化\lambda^{v} 

当图矩阵 S 固定时,目标函数的权重正则化项变得简单:

\min_{\lambda^v} \sum_{v=1}^V \left( \lambda^v M^v + (\lambda^v)^\gamma \right)

其中:

  • M^v = \| H^{v \top} - H^{v \top} S \|_F^2 + \alpha J
  • J:对比正则化器。

通过对目标函数求导并令其为零,可以得到 \lambda^{v} 的更新公式:

\lambda^v = \left( \frac{-M^v}{\gamma} \right)^{\frac{1}{\gamma-1}}.

含义
  • 通过优化 \lambda^{v},动态调整每个视图的权重,使贡献大的视图获得更高的权重。

第三步:完整算法实现(Algorithm 1)

步骤解析

  1. 输入

    • 邻接矩阵 A~1,…,A~VA~1,…,A~V。
    • 特征矩阵 X1,…,XVX1,…,XV。
    • 图滤波阶数 mm 和其他超参数(如 α,s,γ)。
  2. 初始化

    • 初始化视图权重 \lambda^{v}=1。
    • 计算归一化邻接矩阵 A^{v} 和拉普拉斯矩阵 L^{v}
    • 对每个视图进行图滤波,生成平滑特征 H^{v}
  3. 交替优化

    • 固定 \lambda^{v},优化图矩阵 S:
      • 使用梯度下降法和对比正则化更新 S。
    • 固定 S,优化视图权重 \lambda^{v}
      • 按照权重更新公式调整 \lambda^{v}
  4. 对称化

    • 对 S 进行对称化处理:C = \frac{|S| + |S^\top|}{2}​.
  5. 聚类

    • 对 C 进行聚类,输出最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值