L2 Autoregressive Model

本文介绍了自回归模型在机器学习中的应用,包括最大似然估计、RNN、基于掩码的模型如MADE和PixelCNN。这些模型用于概率分布的学习和高维数据生成,讨论了它们的优缺点以及在图像和音频领域的应用。WaveNet和PixelCNN通过特殊的卷积结构增强了模型的表达能力和感受野。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lecture2 Autoregressive Models

Lecture2的主要内容是自回归模型,主要包括:

  • Motivation
  • Histogram
  • Neural Autoregressive models
    • Parameterized distributions and maximum likelihood
    • Autoregressive models
      • RNN
      • Masking-based models

Likelihood-based Model

基于似然的模型主要做的一件事情是:根据数据集 { x ( 1 ) , … , x ( n ) } \{x^{(1)},\dots,x^{(n)}\} { x(1),,x(n)}学习一个概率分布 p d a t a p_{data} pdata。 学习到的 p d a t a p_{data} pdata应该满足:

  1. 我们可以得到任意sample x x x的概率密度 p ( x ) p(x) p(x)
  2. 我们可以从概率分布中采样出一个 x x x

但是我们所处理的数据通常都是高维的,例如一张 128 × 128 × 3 128\times128\times3 128×128×3的彩色图像,他的维度大约是 50000 50000 50000。因此我们还希望我们的模型具有以下几个特点:

  1. 训练过程高效
  2. 模型表达能力强、泛化性强
  3. 生成数据的质量高、速度快
  4. 压缩率高、速度快

Histogram

最简单粗暴的方法就是根据训练集画一个直方图,我们只需要知道每个特征有哪些不同的取值然后计算frequency当作probability即可

根据直方图模型,我们可以轻松的进行以下两个操作:

  1. Inference:给定一个 x x x,求 p ( x ) p(x) p(x)。可以直接看图说话
  2. Sampling:根据CDF生成 x x x。可以通过以下几步完成
    1. 首先计算出CDF: F i   =   ∑ j = 1 i p ( j )       i ∈ { 1 … k } F_{i}\ =\ \sum_{j=1}^{i}p(j)\ \ \ \ \ i\in \{1\dots k\} Fi = j=1ip(j)     i{ 1k} k k k是特征不同取值的数量
    2. 随机生成一个 0 0 0 1 1 1之间的数 u u u
    3. 返回最小的 i i i满足 F i ≥ u F_i \ge u Fiu

然而,直方图模型最显而易见的缺点就是它无法应用在高维数据上。另一个问题就是他的泛化能力差,毕竟直方图是完全按照训练集的数据分布进行拟合,因此是很明显的过拟合,模型的方差会很大。我们想要的分布应该是如下图这种:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hxpQ4d90-1672626993845)(L2 Autoregressive Model.assets/image-20221215083243305.png)]

Likelihood-based Generative Model

为了克服histogram有的问题,我们引入一个参数 θ \theta θ,让模型学习一个基于参数 θ \theta θ的概率分布 p θ ( x ) p_{\theta}(x) pθ(x)并且要求 p θ ( x ) p_{\theta}(x) pθ(x) p d a t a ( x ) p_{data}(x) pdata(x)越接近越好,这其实就是大多数ML模型在做的事情。

如何训练模型?我们需要定义一个损失函数,最优的参数应该满足最小化损失函数,即
θ ∗   =   a r g m i n θ     l o s s ( θ , x ( 1 ) , x ( 2 ) , … , x ( n ) ) \theta^{*}\ =\ argmin_{\theta}\ \ \ loss(\theta,x^{(1)}, x^{(2)},\dots,x^{(n)}) θ = argminθ   loss(θ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值