中位数绝对偏差(MAD)法处理离群值

本文介绍了一种用于异常检测的方法——中位数绝对偏差(MAD)。MAD是一种鲁棒性强的统计量,特别适用于存在异常值的数据集。文章详细解释了MAD的计算方法及其在异常检测中的应用,并通过实例展示了如何使用MAD识别并移除离群点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:非妃是公主
专栏:《数学建模》
个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩
在这里插入图片描述

中位数绝对偏差(MAD)是由Hampel(1974)发现并推广的,中位数(M)和平均数(mean)一样,是中心趋势的衡量标准,但它的优点是对异常值的存在非常不敏感。异常检测模型的击穿点是可以被污染(即设置为无穷大)而不迫使模型出现错误(在规模估计器的情况下为无穷大或空)的最大观察比例。例如,当单个观测值具有无限值时,所有观测值的平均值就变成了无限值;因此,平均值的击穿点是0。只有当超过50%的观察值是无限的时候,中位数才会出错。在分解点为0.5的情况下,中位数是具有最高击穿点的离群点估计模型。MAD作为一个异常检测的模型(定义见下面的公式),利用了中位数的这一特性。初此之外,MAD完全不受样本大小的影响。
M A D = b M i × x i − M j × x j MAD=bM_i\times x_i-M_j\times x_j MAD=bMi×xiMj×xj
其中, x j x_j xj是n个原始值的观测值, M i M_i Mi ∣ x i − M j ( x j ) ∣ \left|x_i-M_j\left(x_j\right)\right| xiMj(xj)的中位数, M j M_j Mj x j x_j xj的中位数,即一个单一维度数据集合。通常情况下, b = 1.4826 b=1.4826 b=1.4826,这是一个与数据的正态性假设有关的常数。假设数据整体具有正态性,不考虑离群值所引起的异常。
一般情况下,在中位数上下3倍MAD值范围内波动被认为是正常数据,超过3倍MAD值被认为是离群值,判断公式如下:
M − 3 × M A D < x i < M + 3 × M A D M-3\times MAD < x_i<M+3×MAD M3×MAD<xi<M+3×MAD

or

∣ x i − M M A D ∣ < 3 \vert \frac{x_i-M}{MAD}\vert<3 MADxiM<3

其中, M M M为样本中位数, x i x_i xi为样本值。不满足上述两式的被判断为离群点,满足等式的判定为正常点。

clear
clc
close all
%离群值的删除
t = 1:1:4096;
A = load("3A附件/9.txt");% A读入的为一个一维数组

figure(3)
B3 = filloutliers(A,'linear','movmedian',51);%MAD法

hold on
plot(t,A)
% YL = ylim;
% ylim(YL)
xlim([0,4100])
plot(t,B3)
% ylim(YL)
hold off
legend('原数据','去除离散值后','Location','southeast')
title('中位数绝对偏差去除离散值(MAD)效果图')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherries Man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值