中值绝对误差(Median Absolute Error,MedAE)是一种用于评估预测模型准确度的指标,它是预测值和真实值之间差的绝对值的中位数。
假设有n个样本,真实值分别为y₁, y₂, ……, yₙ,预测值分别为ŷ₁, ŷ₂, ……, ŷₙ。
首先,我们可以定义误差(error)为预测值与真实值之间的差:
eᵢ = yᵢ - ŷᵢ
则第i个样本的误差绝对值为:
|eᵢ| = |yᵢ - ŷᵢ|
我们希望得到所有样本误差绝对值的中位数,即中值绝对误差。因此,我们可以将所有样本误差绝对值从小到大排序,然后取中间的值作为中位数,即:
MedAE = median(|y₁ - ŷ₁|, |y₂ - ŷ₂|, ……, |yₙ - ŷₙ|)
中值绝对误差的取值范围为[0,∞),通常用于比较不同模型的表现。在实际应用中,MedAE通常用于对异常值敏感的场景,例如在离群点检测和异常值识别等问题中,MedAE是一种常用的性能指标。