中值绝对误差

中值绝对误差(Median Absolute Error,MedAE)是一种用于评估预测模型准确度的指标,它是预测值和真实值之间差的绝对值的中位数。

假设有n个样本,真实值分别为y₁, y₂, ……, yₙ,预测值分别为ŷ₁, ŷ₂, ……, ŷₙ。

首先,我们可以定义误差(error)为预测值与真实值之间的差:

eᵢ = yᵢ - ŷᵢ

则第i个样本的误差绝对值为:

|eᵢ| = |yᵢ - ŷᵢ|

我们希望得到所有样本误差绝对值的中位数,即中值绝对误差。因此,我们可以将所有样本误差绝对值从小到大排序,然后取中间的值作为中位数,即:

MedAE = median(|y₁ - ŷ₁|, |y₂ - ŷ₂|, ……, |yₙ - ŷₙ|)

中值绝对误差的取值范围为[0,∞),通常用于比较不同模型的表现。在实际应用中,MedAE通常用于对异常值敏感的场景,例如在离群点检测和异常值识别等问题中,MedAE是一种常用的性能指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值