计算机应用数学1——概率理论基础

1.1 概率论基础

1.1.1 条件概率三大公式

(1)乘法公式

在这里插入图片描述

(2)全概率公式

在这里插入图片描述

在这里插入图片描述

(3)贝叶斯公式

在这里插入图片描述
在这里插入图片描述

1.1.2 方差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

1.2 离差

1.2.1 马尔可夫定理

P r ( x ≥ α ) = E ( X ) α Pr(x\geq\alpha)=\frac{E(X)}{\alpha} Pr(xα)=αE(X)

在这里插入图片描述

在这里插入图片描述

1.2.2 切比雪夫定理

P r ( ∣ X − μ ∣ ≥ c ) ≤ σ 2 c 2 Pr(|X-\mu|\geq c)\leq \frac{\sigma^2}{c^2} Pr(Xμc)c2σ2

在这里插入图片描述

在这里插入图片描述

1.2.3 参数估计与假设检验

(1)总体平均值估计

在这里插入图片描述

方差已知(Q:不知道均值的情况下,是如何得到总体方差的?)
  • 正态分布:

在这里插入图片描述

在这里插入图片描述

  • 非正态分布:

在这里插入图片描述

在这里插入图片描述

方差未知:
  • 正态分布:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 非正态分布:

在这里插入图片描述

在这里插入图片描述

(2)总体标准差估计

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)总体方差估计

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.2.4 切诺夫界

在这里插入图片描述
在这里插入图片描述

1.2.5 墨菲定律

在这里插入图片描述

1.3 随机游走与马尔可夫链

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherries Man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值