计算机图形学10:二维观察之线的裁剪

本文详细介绍了计算机图形学中的线段裁剪算法,包括Cohen-Sutherland算法和中点分割算法的伪代码及OpenGL实现,同时展示了裁剪效果,并提供了测试代码。此外,还提及了梁友栋-Barsky算法作为补充。
摘要由CSDN通过智能技术生成

在这里插入图片描述

作者:非妃是公主
专栏:《计算机图形学》
博客地址https://blog.csdn.net/myf_666
个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩
在这里插入图片描述

专栏推荐

专栏名称专栏地址
软件工程专栏——软件工程
计算机图形学 专栏——计算机图形学
操作系统专栏——操作系统
软件测试专栏——软件测试
机器学习专栏——机器学习
数据库专栏——数据库
算法专栏——算法

专栏系列文章

文章名称文章地址
直线生成算法(DDA算法)计算机图形学01——DDA算法
中点BH算法绘制直线计算机图形学02——中点BH算法
改进的中点BH算法计算机图形学03——改进的中点BH算法
中点Bresenham画椭圆计算机图形学04——中点BH绘制椭圆
中点BH算法绘制任意斜率直线计算机图形学05——中点BH算法绘制任意斜率的直线
中点Bresenham画圆计算机图形学06——中点BH算法画圆
有效边表法的多边形扫描转换计算机图形学07——有效边表法绘制填充多边形
中点BH算法绘制抛物线 100 x = y 2 100x = y^2 100x=y2计算机图形学08——中点BH绘制抛物线
二维观察之点的裁剪计算机图形学09——二维观察之点裁剪
二维观察之线的裁剪计算机图形学10——二维观察之线裁剪
二维观察之多边形的裁剪计算机图形学11——二维观察之多边形裁剪
二维图形的几何变换计算机图形学12——二维图形几何变换
三维图形的几何变换计算机图形学13——三维图形几何变换
三维图形的投影变换计算机图形学14——三维图形投影变换

计算机图形学(英语:computer graphics,缩写为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一个分支领域,主要关注数字合成与操作视觉的图形内容。虽然这个词通常被认为是指三维图形,事实上同时包括了二维图形以及影像处理。


一、算法原理

在这里插入图片描述

采用的方法是,对线段的两个端点进行编码,如下:

在这里插入图片描述


二、伪代码

① 输入直线段的两端点坐标:p1(x1,y1)、p2(x2,y2),以及窗口的四条边界坐标:wyt、wyb、wxl和wxr。

② 对p1、p2进行编码:点p1的编码为code1,点p2的编码为code2。

③ 若code1|code2=0,简取之,转⑥;否则,若code1&code2≠0,简弃之,转⑦;当上述两条均不满足时,进行步骤④ 。

④ 确保p1在窗口外部:若p1在窗口内,则交换p1和p2的坐标值和编码。

⑤ 按左、右、下、上的顺序求出直线段与窗口边界的交点,并用该交点的坐标值替换p1的坐标值。去掉p1s这一段。转②。

⑥ 画当前的直线段p1p2。 ⑦算法结束。

由于在 ⑤ 的求解过程中,需要涉及到线段与窗口边界交点,采用的方法是中点分割算法,它是一种二分法来不断逼近真实交点的求解方法,具体如下。


2.1 中点分割算法——伪代码

①若code1|code2=0,对直线段应简取之,结束;否则,若code1&code2≠0,对直线段可简弃之,结束;当这两条均不满足时,进行步骤② 。

②找出该直线段离窗口边界最远的点和该直线段的中点。判中点是否在窗口内:若不在,则把中点和离窗口边界最远点构成的线段丢掉,以线段上的另一点和该中点再构成线段求其中点;如中点在窗口内,则又以中点和最远点构成线段,并求其中点,直到中点接近窗口边界,则该中点就是该线段落在窗口内的一个端点坐标。

③如另一点在窗口内,则经②即确定了该线段在窗口内的部分。如另一点不在窗口内,则该点和所求出的在窗口上的那一点构成一条线段,重复步骤②,即可求出落在窗口内的另一点。


三、OpenGL代码实现

/// <summary>
/// 对线段的端点进行编码
/// </summary>
/// <param name="p1">待编码的点</param>
/// <param name="wxl">窗口的左边缘</param>
/// <param name="wxr">窗口的右边缘</param>
/// <param name="wyb">窗口的下边缘</param>
/// <param name="wyt">窗口的上边缘</param>
/// <returns></returns>
int codePoint(VERTEX p1, int wxl, int wxr, int wyb, int wyt) {
	int codeP1;
	// 编码p1
	if (p1.x < wxl) {
		if (p1.y < wyb) {
			codeP1 = 5;
		}
		else if (p1.y < wyt) {
			codeP1 = 1;
		}
		else {
			codeP1 = 9;
		}
	}
	else if (p1.x < wxr) {
		if (p1.y < wyb) {
			codeP1 = 4;
		}
		else if (p1.y < wyt) {
			codeP1 = 0;
		}
		else {
			codeP1 = 8;
		}
	}
	else {
		if (p1.y < wyb) {
			codeP1 = 6;
		}
		else if (p1.y < wyt) {
			codeP1 = 2;
		}
		else {
			codeP1 = 10;
		}
	}
	return codeP1;
}

// 中点Bresenham算法绘制直线段(k任意)
void  MidBhline2(int  x0, int  y0, int  x1, int  y1) {
	int  dx, dy, d, UpIncre, DownIncre, x, y;
	if (x0 > x1) {				// x0为起始点,x1为终止点
		x = x1; x1 = x0; x0 = x; y = y1; y1 = y0; y0 = y;
	}
	x = x0; y = y0; dx = x1 - x0; dy = y1 - y0;
	// 0 <= k <= 1
	if (dy >= 0 && dy < dx) {
		d = dx - 2 * dy;			// d的初始值
		UpIncre = 2 * dx - 2 * dy;	// 2dx*(1 + k)
		DownIncre = -2 * dy;		// 2dx(-k)
		glBegin(GL_POINTS);		// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			x++;					// 更新x
			if (d < 0) {			// 根据d的符号更新d和y
				y++;
				d += UpIncre;
			}
			else
				d += DownIncre;
		}
		glEnd();					// 结束绘制点
	}
	// k > 1
	else if (dy >= 0 && dy > dx) {
		d = -dy + 2 * dx;			// d的初始值
		UpIncre = 2 * dx;			// 2dx*(1)
		DownIncre = 2 * dx - 2 * dy;// 2dx*(1-k)
		glBegin(GL_POINTS);		// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			y++;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				d += UpIncre;
			}
			else {
				x++;
				d += DownIncre;
			}

		}
		glEnd();
	}

	// -1 <= k < 0
	else if (dy < 0 && dy >= -dx) {
		d = -dx - 2 * dy;			// d的初始值
		UpIncre = -2 * dy;			// 2dx*(1)
		DownIncre = -2 * dx - 2 * dy;// 2dx*(1-k)
		glBegin(GL_POINTS);			// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			x++;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				d += UpIncre;
			}
			else {
				y--;
				d += DownIncre;
			}

		}
		glEnd();
	}
	// k < -1
	else if (dy < 0 && dy < -dx) {
		d = -2 * dx - dy;			// d的初始值
		UpIncre = -2 * dx - 2 * dy;	// 2dx*(1)
		DownIncre = -2 * dx;		// 2dx*(1-k)
		glBegin(GL_POINTS);			// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			y--;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				x++;
				d += UpIncre;
			}
			else {
				d += DownIncre;
			}

		}
		glEnd();
	}
}

/// <summary>
/// Cohen-Sutherland算法 编码裁剪直线段
/// </summary>
/// <param name="p1">线段的起始点</param>
/// <param name="p2">线段的终点</param>
/// <param name="wxl">窗口的左边缘</param>
/// <param name="wxr">窗口的右边缘</param>
/// <param name="wyb">窗口的下边缘</param>
/// <param name="wyt">窗口的上边缘</param>
void cohenCropLine(VERTEX p1, VERTEX p2, int wxl, int wxr, int wyb, int wyt) {
	// 进行编码
	int codeP1 = 0;
	int codeP2 = 0;
	// 编码p1
	codeP1 = codePoint(p1, wxl, wxr, wyb, wyt);
	codeP2 = codePoint(p2, wxl, wxr, wyb, wyt);

	if ((codeP1 | codeP2) == 0) {		// 简取之
		MidBhline2(p1.x, p1.y, p2.x, p2.y);
	}
	else if ((codeP1 & codeP2) != 0) {	// 简弃之
		return;
	}
	else { // 部分课件
		// 寻找p1的最远可见点
		if (codeP1 != 0) { // p1不可见
			VERTEX p11, p22, pmid;
			p11.x = p1.x;
			p11.y = p1.y;
			p22.x = p2.x;
			p22.y = p2.y;
			pmid.x = (p11.x + p22.x) / 2;
			pmid.y = (p11.y + p22.y) / 2;
			while (abs(p11.x - pmid.x) > 1 || abs(p11.y - pmid.y) > 1) {
				int cmid = codePoint(pmid, wxl, wxr, wyb, wyt);
				if (cmid == 0) {// 中点在窗口内部
					p22 = pmid;
				}
				else {			// 中点在窗口外部
					p11 = pmid;
				}
				pmid.x = (p11.x + p22.x) / 2;
				pmid.y = (p11.y + p22.y) / 2;
			}
			p1 = pmid;
		}

		// 寻找p2的最远可见点
		if (codeP2 != 0) { // p2不可见
			VERTEX p11, p22, pmid;
			p11.x = p1.x;
			p11.y = p1.y;
			p22.x = p2.x;
			p22.y = p2.y;
			pmid.x = (p11.x + p22.x) / 2;
			pmid.y = (p11.y + p22.y) / 2;
			while (abs(p22.x - pmid.x) > 1 || abs(p22.y - pmid.y) > 1) {
				int cmid = codePoint(pmid, wxl, wxr, wyb, wyt);
				if (cmid == 0) {// 中点在窗口内部
					p11 = pmid;
				}
				else {			// 中点在窗口外部
					p22 = pmid;
				}
				pmid.x = (p11.x + p22.x) / 2;
				pmid.y = (p11.y + p22.y) / 2;
			}
			p2 = pmid;
		}

		// 从p1 - p2划线
		MidBhline2(p1.x, p1.y, p2.x, p2.y);
	}
}

四、效果展示

4.1 裁剪效果

裁剪效果如下:

在这里插入图片描述


4.2 测试代码

测试代码如下:

void testCropLine() {
	Bhline(20, 30, 200, 30);
	Bhline(200, 30, 200, 200);
	Bhline(200, 200, 20, 200);
	Bhline(20, 200, 20, 30);
	VERTEX p1;
	p1.x = 50;
	p1.y = 250;
	VERTEX p2;
	p2.x = 150;
	p2.y = 10;
	cohenCropLine(p1, p2, 20, 200, 30, 200);


	p1.x = 0;
	p1.y = 0;

	p2.x = 100;
	p2.y = 300;
	cohenCropLine(p1, p2, 20, 200, 30, 200);

	p1.x = 0;
	p1.y = 0;

	p2.x = 300;
	p2.y = 100;
	cohenCropLine(p1, p2, 20, 200, 30, 200);
}

// 显示图形
void Display(void) {
	glClear(GL_COLOR_BUFFER_BIT);		//用当前背景色填充窗口
	glColor3f(0.0f, 0.0f, 0.0f);
	

	// 此处需增加调用基本图形生成函数
	Bhline(0, 0, 100, 300);
	Bhline(0, 0, 300, 100);

	
	Bhline(20, 30, 200, 30);
	Bhline(200, 30, 200, 200);
	Bhline(200, 200, 20, 200);
	Bhline(20, 200, 20, 30);

	VERTEX p1;
	p1.x = 50;
	p1.y = 250;
	VERTEX p2;
	p2.x = 150;
	p2.y = 10;
	MidBhline2(p1.x, p1.y, p2.x, p2.y);

	glFlush();
}

// 第2个窗口中的图形绘制
void Displayw(void)
{
	glClear(GL_COLOR_BUFFER_BIT);
	glColor3f(0.0f, 0.0f, 0.0f);
	
	// 此处进行裁剪
	testCropLine();
	
	glFlush();
}

主函数等其它框架部分与前面(点裁剪)相同,可通过开头链接进行跳转查看,在此不再冗余贴代码片。


五、梁友栋-Barsky算法

这里对另一种线段的裁剪方法进行补充,但不详细展开介绍。

在这里插入图片描述

还有一种线段的裁剪方法为梁友栋-Barsky算法,它的基本思想是:

设要裁剪的线段是P0P1。 P0P1和窗口边界交于A,B,C,D四点。从A,B和P0三点中找出最靠近P1的点(P0)。从C,D和P1中找出最靠近P0的点 ( C ) (C) (C)。那么P0C就是P0P1线段上的可见部分。


the end……

二维观察之线的裁剪到这里就要结束啦~~到此既是缘分,欢迎您的点赞评论收藏关注我,不迷路,我们下期再见!!

😘😘😘 我是Cherries,一位计算机科班在校大学生,写博客用来记录自己平时的所思所想!
💞💞💞 内容繁杂,又才疏学浅,难免存在错误,欢迎各位大佬的批评指正!
👋👋👋 我们相互交流,共同进步!

:本文由非妃是公主发布于https://blog.csdn.net/myf_666,转载请务必标明原文链接:https://blog.csdn.net/myf_666/article/details/128508894

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherries Man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值