计算机图形学05:中点BH算法对任意斜率的直线扫描转换方法

在这里插入图片描述

作者:非妃是公主
专栏:《计算机图形学》
博客地址https://blog.csdn.net/myf_666
个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩
在这里插入图片描述

专栏推荐

专栏名称专栏地址
软件工程专栏——软件工程
计算机图形学 专栏——计算机图形学
操作系统专栏——操作系统
软件测试专栏——软件测试
机器学习专栏——机器学习
数据库专栏——数据库
算法专栏——算法

专栏系列文章

文章名称文章地址
直线生成算法(DDA算法)计算机图形学01——DDA算法
中点BH算法绘制直线计算机图形学02——中点BH算法
改进的中点BH算法计算机图形学03——改进的中点BH算法
中点Bresenham画椭圆计算机图形学04——中点BH绘制椭圆
中点BH算法绘制任意斜率直线计算机图形学05——中点BH算法绘制任意斜率的直线
中点Bresenham画圆计算机图形学06——中点BH算法画圆
有效边表法的多边形扫描转换计算机图形学07——有效边表法绘制填充多边形
中点BH算法绘制抛物线 100 x = y 2 100x = y^2 100x=y2计算机图形学08——中点BH绘制抛物线
二维观察之点的裁剪计算机图形学09——二维观察之点裁剪
二维观察之线的裁剪计算机图形学10——二维观察之线裁剪
二维观察之多边形的裁剪计算机图形学11——二维观察之多边形裁剪
二维图形的几何变换计算机图形学12——二维图形几何变换
三维图形的几何变换计算机图形学13——三维图形几何变换
三维图形的投影变换计算机图形学14——三维图形投影变换

计算机图形学(英语:computer graphics,缩写为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一个分支领域,主要关注数字合成与操作视觉的图形内容。虽然这个词通常被认为是指三维图形,事实上同时包括了二维图形以及影像处理。


一、问题提出

前几篇文章中已经提到了中点BH算法绘制直线(计算机图形学02:中点BH算法绘制直线计算机图形学03:改进的中点BH算法)。

但在这两篇文章种,都只讨论了斜率大于 0 小于 1 的情况(即: 0 < = k < = 1 0<=k<=1 0<=k<=1),如果要扩展到任意斜率怎么办呢?

其实也很简单秩序要将斜率分成 4 类,然后分情况讨论即可,具体的算法原理及推导如下。


二、算法原理

将斜率分为4种情况,分别为:

  1. 0 < = k < = 1 0<=k<=1 0<=k<=1
  2. k > = 1 k>=1 k>=1
  3. − 1 < = k < 0 -1<=k<0 1<=k<0
  4. k < − 1 k<-1 k<1

然后针对每种情况进行求解,得到d、x和y的更新表达式,如下:

在这里插入图片描述

详细推导可见直线的中点Bresenham算法的实现


三、OpenGL代码实现

OpenGL实现如下:

// 中点Bresenham算法绘制直线段(k任意)
void  MidBhline2(int  x0, int  y0, int  x1, int  y1) {
	int  dx, dy, d, UpIncre, DownIncre, x, y;
	if (x0 > x1) {				// x0为起始点,x1为终止点
		x = x1; x1 = x0; x0 = x; y = y1; y1 = y0; y0 = y;
	}
	x = x0; y = y0; dx = x1 - x0; dy = y1 - y0; 
	// 0 <= k <= 1
	if (dy >= 0 && dy < dx) {
		d = dx - 2 * dy;			// d的初始值
		UpIncre = 2 * dx - 2 * dy;	// 2dx*(1 + k)
		DownIncre = -2 * dy;		// 2dx(-k)
		glBegin(GL_POINTS);		// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			x++;					// 更新x
			if (d < 0) {			// 根据d的符号更新d和y
				y++;
				d += UpIncre;
			}
			else
				d += DownIncre;
		}
		glEnd();					// 结束绘制点
	}
	// k > 1
	else if (dy >= 0 && dy > dx) {
		d = - dy + 2 * dx;			// d的初始值
		UpIncre = 2 * dx;			// 2dx*(1)
		DownIncre = 2 * dx - 2 * dy;// 2dx*(1-k)
		glBegin(GL_POINTS);		// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			y++;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				d += UpIncre;
			}
			else {
				x++;
				d += DownIncre;
			}
				
		}
		glEnd();
	}

	// -1 <= k < 0
	else if (dy < 0 && dy >= -dx) {
		d = -dx - 2 * dy;			// d的初始值
		UpIncre = -2 * dy;			// 2dx*(1)
		DownIncre = -2 * dx - 2 * dy;// 2dx*(1-k)
		glBegin(GL_POINTS);			// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			x++;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				d += UpIncre;
			}
			else {		
				y--;
				d += DownIncre;
			}

		}
		glEnd();
	}
	// k < -1
	else if (dy < 0 && dy < -dx) {
		d = -2 * dx - dy;			// d的初始值
		UpIncre = -2 * dx - 2 * dy;	// 2dx*(1)
		DownIncre = -2 * dx;		// 2dx*(1-k)
		glBegin(GL_POINTS);			// 开始绘制点
		while (x <= x1) {
			glVertex2i(x, y);		// 画点
			y--;					// 更新y
			if (d < 0) {			// 根据d的符号更新d和x
				x++;
				d += UpIncre;
			}
			else {				
				d += DownIncre;
			}

		}
		glEnd();
	}
}

四、效果展示

运行该算法绘制直线后,显示如下:

在这里插入图片描述


the end……

中点BH算法对任意斜率的直线扫描转换方法到这里就要结束啦~~到此既是缘分,欢迎您的点赞评论收藏关注我,不迷路,我们下期再见!!

😘😘😘 我是Cherries,一位计算机科班在校大学生,写博客用来记录自己平时的所思所想!
💞💞💞 内容繁杂,又才疏学浅,难免存在错误,欢迎各位大佬的批评指正!
👋👋👋 我们相互交流,共同进步!

:本文由非妃是公主发布于https://blog.csdn.net/myf_666,转载请务必标明原文链接:https://blog.csdn.net/myf_666/article/details/128173092

评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherries Man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值