Focal Loss

Focal Loss是用于解决目标检测任务中,正负样本不平衡的问题

个人认为这篇博文讲的比较清楚,但是缺少对所谓的“难例样本”的说明,所以pull一些细节
在目标检测任务中,样本不均衡问题主要体现在两个方面:正负样本不均衡难易样本不均衡
正负样本:正样本指的就是我们需要的目标区域,也就是前景;负样本是我们不需要的非目标区域,也就是背景。一般在目标检测任务框架中,保持正负样本的比例为1:3(经验值)。
难易样本:每个bbox都是有IoU的,IoU趋近于两个极端的bbox就是易分样本,通俗来说就是模型对这个bbox中是否存在目标非常自信,这部分样本在实际中占绝大多数,对loss的贡献非常小。而IoU趋近于阈值的bbox就是难分样本,包括容易被错分为负样本的正样本(难分正样本)以及容易被错分为正样本的负样本(难分负样本),难分样本对loss的贡献较大,但数量在实际中较少。
如果采用常规的CEloss,就会导致loss被数量占大多数的易分样本主导。
于是Focal Loss就出来了,用一个平衡因子 α t α_t αt,在计算loss时,平衡正负样本的比例不均(区别于fast-rcnn用IoU来实现调整正负样本的比例)。公式如下
Focal Loss公式
p t p_t pt对应的公式如下, y y y为GT,其实为{-1,1}, p p p为待分类实例属于正例的概率(应该就是模型给出的置信度)
请添加图片描述
α t α_t αt用于平衡正负样本本身的比例不均,
( 1 − p t ) γ (1-p_t)^γ (1pt)γ用于平衡难易样本比例不均。 γ γ γ是一个超参数,用于调节平衡的程度,当 γ γ γ为0时,便是CELoss。那么来分析一下易分样本对应的 p t p_t pt情况。对于易分正样本,也就是模型非常确信,这就是正样本,那么 p t p_t pt就会趋近于1,此时 ( 1 − p t ) γ (1-p_t)^γ (1pt)γ趋近于0,整体loss趋近于0,对Loss不产生太多影响;对于易分负样本,也就是模型非常确信这就是负样本,那么 p p p就会趋近于0, p t p_t pt会趋近于1,后续同上理。
对于难分样本,p就会处在[0,1]的中间区域,整体的loss数值就会比较大,具体的差异可以代数值看看结果,可以看看B站这个视频的展示
在这里插入图片描述
这个结论在论文中也提到了,对于易分样本的loss,相较于CELoss,缩小了大约100倍。

Focal Loss论文中也对超参数 γ γ γ α α α的取值进行了实验,结果如下。
在这里插入图片描述

  • 18
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值