Pipelines + GridSearch

本文详细介绍了使用Python的scikit-learn和LightGBM库进行机器学习模型优化的过程。通过GridSearchCV进行参数调优,结合Imputer处理缺失值,SelectKBest特征选择,以及LGBMRegressor作为预测模型,实现对连续型数据的有效预测,并评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加载库与数据

直接给出示例

import numpy as np
import pandas as pd
import lightgbm as lgb
from lightgbm import LGBMRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.feature_selection import SelectKBest, VarianceThreshold
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import Imputer, PolynomialFeatures, StandardScaler, OneHotEncoder, MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestRegressor
import os
import time

import warnings
warnings.filterwarnings("ignore")

def MAE(y, ypred):  #定义损失函数


    import numpy as np

    return np.sum([abs(y[i]-ypred[i]) for i in range(len(y))]) / len(y)
pipeline = Pipeline(
                    [('imp', Imputer(missing_values='NaN', axis=0)),
                     ('feat_select', SelectKBest()),
                     ('lgbm', LGBMRegressor())
                     
])

parameters = {}
parameters['imp__strategy'] = ['mean', 'median', 'most_frequent']
parameters['feat_select__k'] = [5, 10]

CV = GridSearchCV(pipeline, parameters, scoring = 'mean_absolute_error', n_jobs= 1)
CV.fit(x_train_cont, y_train)   

print('Best score and parameter combination = ')

print(CV.best_score_)    
print(CV.best_params_)    

y_pred = CV.predict(x_valid_cont)
print('MAE on validation set: %s' % (round(MAE(y_valid, y_pred), 5)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值