循环神经网络

循环神经网络

1 - 无隐状态的神经网络

2 - 有隐状态的循环神经网络


import torch
from d2l import torch as d2l
X,W_xh = torch.normal(0,1,(3,1)),torch.normal(0,1,(1,4))
H,W_hh = torch.normal(0,1,(3,4)),torch.normal(0,1,(4,4))

torch.matmul(X,W_xh) + torch.matmul(H,W_hh)
tensor([[ 2.7082, -1.9897, -0.5827,  2.6741],
        [-4.2047,  2.0132,  1.7765, -0.2202],
        [-0.8636,  0.8902,  0.6410,  1.5466]])

现在,我们沿列(轴1)拼接矩阵X和H,沿行(轴0)拼接矩阵W_xh和W_hh

这两个拼接分别产⽣形状(3, 5)和形状(5, 4)的矩阵。再将这两个拼接的矩阵相乘,我们得到与上⾯相同形状(3, 4)的输出矩阵

torch.matmul(torch.cat((X, H), 1), torch.cat((W_xh, W_hh), 0))
tensor([[ 2.7082, -1.9897, -0.5827,  2.6741],
        [-4.2047,  2.0132,  1.7765, -0.2202],
        [-0.8636,  0.8902,  0.6410,  1.5466]])

3 - 基于循环神经网络的字符级语言模型

4 - 困惑度(Perplexity)


5 - 小结

  • 对隐状态使用循环计算的神经网络称为循环神经网络(RNN)
  • 循环神经网络的隐状态可以捕获直到当前时间步序列的历史信息
  • 循环神经网络模型的参数数量不会随着时间步的增加而增加
  • 我们可以使用循环神经网络创建字符级语言模型
  • 我们可以使用困惑度来评价语言模型的质量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值