现代循环神经网络 - 机器翻译与数据集

机器翻译与数据集

语言模型是自然语言处理的关键,而机器翻译是语言模型最成功的基准测试。因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction) 的核心问题。序列转换模型在各类现代人工智能应用中发挥着至关重要的作用,因此我们将其作为本章剩余部分的重点。为此,本节将介绍机器翻译问题及其后文需要使用的数据集

机器翻译(machine translation)指的是将序列从⼀种语⾔⾃动翻译成另⼀种语⾔。事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代,特别是在第⼆次世界⼤战中使⽤计算机破解语⾔编码。⼏⼗年来,在使⽤神经⽹络进⾏端到端学习的兴起之前,统计学⽅法在这⼀领域⼀直占据主导地[Brown et al., 1988, Brown et al., 1990]。因为统计机器翻译(statisticalmachine translation)涉及了翻译模型和语⾔模型等组成部分的统计分析,因此基于神经⽹络的⽅法通常被称为 神经机器翻译(neuralmachinetranslation),⽤于将两种翻译模型区分开来

本书的关注点是神经网络机器翻译方法,强调的是端到到的学习。机器翻译的数据集是源语言和目标语言的文本序列对组成的。因此,我们需要一种完全不同的方法来预处理机器翻译数据集,而不是复用语言模型的预处理程序。下面,我们来看一下如何将预处理后的数据加载到小批量中用于训练

import os
import torch
from d2l import torch as d2l

1 - 下载和预处理数据集

首先,下载⼀个由Tatoeba项⽬的双语句⼦对114 组成的“英-法”数据集,数据集中的每⼀⾏都是制表符分隔的⽂本序列对,序列对由英⽂⽂本序列和翻译后的法语⽂本序列组成。请注意,每个⽂本序列可以是⼀个句⼦,也可以是包含多个句⼦的⼀个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语⾔(sourcelanguage),法语是⽬标语⾔(target language)

d2l.DATA_HUB['frg-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')

def read_data_nmt():
    """载入 英语-法语 数据集"""
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir,'fra.txt'),'r',encoding='utf-8') as f:
        return f.read()
    
raw_text = read_data_nmt()
print(raw_text[:75])
Downloading ..\data\fra-eng.zip from http://d2l-data.s3-accelerate.amazonaws.com/fra-eng.zip...
Go.	Va !
Hi.	Salut !
Run!	Cours !
Run!	Courez !
Who?	Qui ?
Wow!	Ça alors !

下载数据集后,原始文本数据需要经过几个预处理步骤。例如,我们用空格代替不间断空格(non-breaking space),使用小写字母替换大写字母,并在单词和标点符合之间插入空格

def preprocess_nmt(text):
    """预处理 英语-法语 数据集"""
    def no_space(char,prev_char):
        return char in set(',.!?') and prev_char !=' '
    
    # 使用空格替换不间断空格
    # 使用小写字母替换大写字母
    text = text.replace('\u202f',' ').replace('\xa0',' ').lower()
    # 在单词和标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char,text[i - 1]) else char for i,char in enumerate(text)]
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])
go .	va !
hi .	salut !
run !	cours !
run !	courez !
who ?	qui ?
wow !	ça alors !

2 - 词元化

在与以前的字符级词元化不同。在机器翻译中,我们更喜欢单词级词元化(最先进的模型可能使用更高级的词元化技术)。下面的tokenize_nmt函数对前num_examples个文本序列对进行词元,其中每个词元要么是一个词,要么是一个标点符号

函数返回两个词元列表:source和target:source[i]是源语言(英语)第i个文本序列的词元列表,target[i]是目标语言(法语)第i个文本序列的词元列表

def tokenize_nmt(text,num_examples=None):
    """词元化 英语-法语 数据集"""
    source,target = [],[]
    for i,line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
    return source,target

source,target = tokenize_nmt(text)
source[:6], target[:6]
([['go', '.'],
  ['hi', '.'],
  ['run', '!'],
  ['run', '!'],
  ['who', '?'],
  ['wow', '!']],
 [['va', '!'],
  ['salut', '!'],
  ['cours', '!'],
  ['courez', '!'],
  ['qui', '?'],
  ['ça', 'alors', '!']])

让我们绘制每个文本序列所包含的词元数量的直方图。在这个简单的“英-法”数据集中,大多数文本序列的词元数量少于20个

def show_list_len_pair_hist(legend,xlabel,ylabel,xlist,ylist):
    """绘制列表长度对的直方图"""
    d2l.set_figsize()
    _,_,patches = d2l.plt.hist([[len(l) for l in xlist],[len(l) for l in ylist]])
    d2l.plt.xlabel(xlabel)
    d2l.plt.ylabel(ylabel)
    for patch in patches[1].patches:
        patch.set_hatch('/')
    d2l.plt.legend(legend)
    
show_list_len_pair_hist(['source', 'target'], '# tokens per sequence','count', source, target);

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-khXbSOUG-1662903434837)(https://yingziimage.oss-cn-beijing.aliyuncs.com/img/202209112129993.svg)]

3 - 词表

由于机器翻译数据集由语⾔对组成,因此我们可以分别为源语⾔和⽬标语⾔构建两个词表。使⽤单词级词元化时,词表⼤⼩将明显⼤于使⽤字符级词元化时的词表⼤⼩。为了缓解这⼀问题,这⾥我们将出现次数少于2次的低频率词元视为相同的未知(“<unk>”)词元。除此之外,我们还指定了额外的特定词元,例如在⼩批量时⽤于将序列填充到相同⻓度的填充词元(“<pad>”),以及序列的开始词元(“<bos>”)和结束词元(“<eos>”)。这些特殊词元在⾃然语⾔处理任务中⽐较常⽤

src_vocab = d2l.Vocab(source,min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])

len(src_vocab)
10012

4 - 加载数据集

回想⼀下,语⾔模型中的序列样本都有⼀个固定的⻓度,⽆论这个样本是⼀个句⼦的⼀部分还是跨越了多个句⼦的⼀个⽚断。这个固定⻓度是由 8.3节中的 num_steps(时间步数或词元数量)参数指定的。在机器翻译中,每个样本都是由源和⽬标组成的⽂本序列对,其中的每个⽂本序列可能具有不同的⻓度

为了提⾼计算效率,我们仍然可以通过截断(truncation)和 填充(padding)⽅式实现⼀次只处理⼀个⼩批量的⽂本序列。假设同⼀个⼩批量中的每个序列都应该具有相同的⻓度num_steps,那么如果⽂本序列的词元数⽬少于num_steps时,我们将继续在其末尾添加特定的“”词元,直到其⻓度达到num_steps;反之,我们将截断⽂本序列时,只取其前num_steps 个词元,并且丢弃剩余的词元。这样,每个⽂本序列将具有相同的⻓度,以便以相同形状的⼩批量进⾏加载

如前所述,下面的truncate_pad函数将截断或填充文本序列

def truncate_pad(line,num_steps,padding_token):
    """截断或填充文本序列"""
    if len(line) > num_steps:
        return line[:num_steps] # 截断
    return line + [padding_token] * (num_steps - len(line)) # 填充

truncate_pad(src_vocab[source[0]],10,src_vocab['<pad>'])
[47, 4, 1, 1, 1, 1, 1, 1, 1, 1]

现在我们定义一个函数,可以将文本序列转换成小批量数据集用于训练。我们将特定的“<eos>”词元添加到所有序列的末尾,⽤于表⽰序列的结束。当模型通过⼀个词元接⼀个词元地⽣成序列进⾏预测时,⽣成的“<eos>”词元说明完成了序列输出⼯作。此外,我们还记录了每个⽂本序列的⻓度,统计⻓度时排除了填充词元,在稍后将要介绍的⼀些模型会需要这个⻓度信息

def build_array_nmt(lines,vocab,num_steps):
    """将机器翻译的文本序列转换成小批量"""
    lines = [vocab[l] for l in lines]
    lines = [l + [vocab['<eos>']] for l in lines]
    array = torch.tensor([truncate_pad(
                        l,num_steps,vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    return array,valid_len

5 - 训练模型

最后,我们定义load_data_nmt函数来返回数据迭代器,以及源语言和目标语言的两种词表

def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())
    source, target = tokenize_nmt(text, num_examples)
    src_vocab = d2l.Vocab(source, min_freq=2,
                        reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = d2l.Vocab(target, min_freq=2,
                        reserved_tokens=['<pad>', '<bos>', '<eos>'])
    
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
    
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = d2l.load_array(data_arrays, batch_size)
    return data_iter, src_vocab, tgt_vocab

下面我们读出“英语-法语”数据集中的第一个小批量数据

train_iter,src_vocab,tgt_vocab = load_data_nmt(batch_size=2,num_steps=8)
for X,X_valid_len,Y,Y_valid_len in train_iter:
    print('X:', X.type(torch.int32))
    print('X的有效⻓度:', X_valid_len)
    print('Y:', Y.type(torch.int32))
    print('Y的有效⻓度:', Y_valid_len)
    break
X: tensor([[16, 30,  4,  3,  1,  1,  1,  1],
        [ 6,  0,  4,  3,  1,  1,  1,  1]], dtype=torch.int32)
X的有效⻓度: tensor([4, 4])
Y: tensor([[ 0,  5,  3,  1,  1,  1,  1,  1],
        [21,  0,  4,  3,  1,  1,  1,  1]], dtype=torch.int32)
Y的有效⻓度: tensor([3, 4])

6 - 小结

  • 机器翻译指的是将文本序列从一种语言自动翻译成另一种语言
  • 使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小,为了缓解这一问题,我们可以将低频词元视为相同的未知词元
  • 通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便小批量的方式加载
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值