有哪些手段可以提升深度神经网络的泛化性能
人工神经网络以其智能性见长,那么神经网络能真的学到一个映射的本质吗?也就是说,对一个映射给出一定的必要的训练样本训练后,网络能否对样本以外的样本给出较为准确的预测。
泛化能力也就是神经网络用于对未知数据预测的能力。神经网络对训练样本区间范围内的样本有较好的泛化能力,而对于训练样本确定的范围外的样本不能认为有泛化能力。常规的几种增强泛化能力的方法,罗列如下:
谷歌人工智能写作项目:神经网络伪原创
BP神经网络的泛化能力如何提高?
神经网络的泛化能力差吗?
泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力。
通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可以给出合适的输出,该能力就被称为泛化能力。
对于神经网络而言,一般越复杂说明该神经网络承受的复杂度越高,描述规律的复杂度容量就越大,当然越好,当然也不是绝对的,但是这能说明一个容器容量的问题,这时该神经网络的泛化能力也越强。
我们需要知道结构复杂性和样本复杂性、样本质量、初始权值、学习时间等因素,都会影响神经网络的泛化能力。
为了保证神经网络具有较强的泛化能力,人们已做了很多研究,得到了诸多泛化方法,常用的包括剪枝算法、构造算法和进化算法等。人工神经网络的泛化能力主要是由于透过无监督