import nltk
from nltk.corpus import *
'''1、古腾堡语料库'''
gutenberg.fileids() #所有古腾堡语料库中的文本
emma = nltk.corpus.gutenberg.words('austen-emma.txt')
#num_chars 变量计数了空白字符
#row()对文件的内容不进行任何语言处理
#sents()函数把文本划分成句子,其中每一个句子是一个词链表
'''非正规文本语料库'''
from nltk.corpus import webtext
for fileid in webtext.fileids():
print fileid
'''即时消息聊天会话语料库'''
from nltk.corpus import nps_chat
chatroom =nps_chat.posts('10-19-20s_706posts.xml')
chatroom[123]
'''2、布朗语料库
布朗语料库是第一个百万词级的英语电子语料库的,
由布朗大学于 1961 年创建。这个语料库包含 500 个不同来源的文本,
按照文体分类,如:新闻、社论等。'''
'''3、路透社语料库
路透社语料库包含 10,788 个新闻文档,共计 130 万字。这些文档分成 90 个主题,
按照“训练”和“测试”分为两组。与布朗语料库不同,路透社语料库的类别是有互相重叠的,
只是因为新闻报道往往涉及多个主题。我们可以查找由一个或多个文档涵盖的主题,
也可以查找包含在一个或多个类别中的文档。
'''
'''4、就职演说语料库
实际上是 55 个文本的集合,每个文本都是一个总统的演说。这个集合的一个有趣特性是它的时间维度。'''
'''5标注文本语料库
NLTK 包含多国语言语料库。“世界人权宣言” (udhr )语料库中不同语言版本中的字长差异。
NLTK 语料库阅读器支持高效的访问大量语料库,并且能用于处理新的语料库。NLTK 中定义的基本语料库函数。'''
'''6 载入你自己的语料库
(1) 将变量corpus_root的值设置为自己的语料的文件夹目录
(2) PlaintextCorpusReader 初始化函数的第二个参数可以是需要加载的文件,可以使用正则表达式
(3) CropsBPCRTest导入txt一类的数据很顺利,但是BracketParseCorpusReader载入宾州树库的实验是失败的,
我看了自己的宾州树库语料库与书中描述的不一致但是不应该啊,还没有找到原因,先留下这个悬案,待日后再审。'''
测试代码2.0
#!/usr/python/bin
# Filename:NltkTest59,一些关于语料库使用的测试
import nltk
from nltk.corpus import brown
from nltk.corpus import reuters
from nltk.corpus import inaugural
from nltk.corpus import udhr
from nltk.corpus import BracketParseCorpusReader
from nltk.corpus import PlaintextCorpusReader
class NltkTest59:
def __init__(self):
print 'Initing...'
#布朗语料库
def BrownTest(self, genres, modals):
'''来源于p59,对于不同问题的常用词统计的测试'''
#词在各类别中的频率表
cfd = nltk.ConditionalFreqDist( \
(genre, word) \
for genre in brown.categories() \
for word in brown.words(categories=genre))
cfd.tabulate(conditions=genres, samples=modals)
#路透社语料库
def ReutersTest(self):
print reuters.fileids() #所有测试文本和训练文本
print reuters.categories() #主题类别
print reuters.categories('training/9865') #一个文本所属多个主题类别
print reuters.categories(['training/9865', 'training/9880'])#多个文本所属多个主题类别
print reuters.fileids('barley') #单个主题类别中的文本
print reuters.fileids(['barley', 'corn']) #多个主题类别中的文本
print reuters.words('training/9865')[:14] #单个文本中的片段词
print reuters.words(['training/9865', 'training/9880']) #多个文本中的词
print reuters.words(categories='barley') #单个主题类别中的所有词
print reuters.words(categories=['barley', 'corn'])
def InauguralTest(self):
'''运行会出错 '''
cfd = nltk.ConditionalFreqDist( \
(target, file[:4]) \
for fileids in inaugural.fileids() \
for w in inaugural.words(fileids) \
for target in ['america', 'citizen'] \
if w.lower().startswith(target))
cfd.plot()
#标注文本语料库,“世界人权宣言” (udhr )语料库
#统计词在语料库中的频率分布
def UdhrTest(self):
languages = ['Chickasaw', 'English', 'German_Deutsch', \
'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
cfd = nltk.ConditionalFreqDist( \
(lang, len(word)) \
for lang in languages \
for word in udhr.words(lang + '-Latin1'))
cfd.plot(cumulative=False)
# cfd.plot(cumulative=True)
#自定义预料库
def CropsPCRTest(self):
corpus_root = r'C:\corpora\udhr2'
file_pattern = r'.*'
encoding = 'utf-8'
pcr = PlaintextCorpusReader(corpus_root, file_pattern)
print pcr.fileids()
print pcr.words('007.txt')
def CropsBPCRTest(self):
'''可耻的失败了,没法运行,可能是语料库版本问题,或者其他,待查'''
corpus_root = r'C:\corpora\penntreebank\parsed'
file_pattern = r'*.wsj'
ptb = BracketParseCorpusReader(corpus_root, file_pattern)
print ptb.fileids()
print len(ptb.sents())
ptb.sents(fileids='\wsj_0001.mrg')[19]
nt59 = NltkTest59()
genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
modals = ['can', 'could', 'may', 'might', 'must', 'will']
# nt59.BrownTest(genres,modals) #词在不同域中出现的次数 (布朗语料库)
# nt59.ReutersTest() #(路透社语料库)
# nt59.InauguralTest() # 不能运行,因为存在SOAP版本错误,不急着解决,以后再补一个解决方案
nt59.UdhrTest()
# nt59.CropsPCRTest()
# nt59.CropsBPCRTest()