PR控制器以及准PR控制器原理分析

1 PR控制器

1.1 PI控制器应用的局限性

  • 通过dq动态坐标系,可以实现对电源系统的有功和无功分别控制,通过前馈交叉项补偿实现零稳态误差,但在当系统长时间工作之后,电源随着发热导致电感,电阻等参数会逐渐不准确,从而使得前馈耦合项不准确,使得系统控制精度下降;
  • 对于直流控制系统(阶跃信号)使用PI控制,能够实现零稳态误差,但是对于交流控制系统,PI控制效果往往差强人意,达不到预期效果,而使用Clark、Park变换将交流量变化为直流量再使用PI控制,不仅使得计算量增加还让控制逻辑变得更复杂。
  • 根据内模原理,要实现对信号的无静差跟踪,控制器必须包含信号的的模型,PI的积分环节的传递函数为 1 s \frac{1}{s} s1,所以PI控制只能对阶跃信号进行无静差跟踪,而余弦信号的传递函数为 L { c o s ( w t ) } = s s 2 + w 2 L\{cos(wt)\}=\frac{s}{s^2+w^2} L{cos(wt)}=s2+w2s,故:如若要实现无静差跟踪,控制器模型中必须包含 s s 2 + w 2 \frac{s}{s^2+w^2} s2+w2s——PR控制器的谐振环节满足。

在这里插入图片描述
在这里插入图片描述

1.2 PR控制器

  工程近似PR控制器传递函数为:
G P R ( s ) = ≈ 1 2 [ G P I ( s + j w 0 ) + G P I ( s − j w 0 ) ] = K p + K i s s 2 + w o 2 G_{PR}(s)=\approx \frac{1}{2}[G_{PI}(s+jw_0)+G_{PI}(s-jw_0)]=Kp+\frac{K_is}{s^2+w_o^2} GPR(s)=≈21[GPI(s+jw0)+GPI(sjw0)]=Kp+s2+wo2Kis
  根据 L { e − a t } = 1 s + a L\{ e^{-at} \}=\frac{1}{s+a} L{eat}=s+a1有:
F ( s ) = L { c o s ( w t ) } = L { ∫ 0 ∞ e − s t c o s ( w t ) d t } = L { 1 2 ∫ 0 ∞ e − s t ( e j w t + e − j w t ) } ⇒ s s 2 + w 2 F(s)=L\{cos(wt)\}=L\{ \int_{0}^{\infty} {e^{-st}cos(wt)dt}\}=L\{ \frac{1}{2} \int_{0}^{\infty}{e^{-st}(e^{jwt}+e^{-jwt})} \} \Rightarrow \frac{s}{s^2+w^2} F(s)=L{cos(wt)}=L{0estcos(wt)dt}=L{210est(ejwt+ejwt)}s2+w2s
  定义: G P R ( s ) = K p + K r s s 2 + w 0 2 G_{PR}(s)=K_p+\frac{K_rs}{s^2+w_0^2} GPR(s)=Kp+s2+w02Krs显然谐振环节是PR控制器的核心,其中, K p 、 K r K_p、K_r KpKr分别为比例增益系数和谐振增益系数, w 0 w_0 w0为谐振频率。
  PR控制器的增益函数为:
∣ G P R ( s ) I s = j w 0 ∣ = K p 2 + K r w 0 − w 0 2 + w 0 2 |G_{PR}(s)I_{s=jw_0}|=\sqrt{K_p^2+ \frac{K_rw_0}{-{w_0}^2+w_0^2}} GPR(s)Is=jw0=Kp2+w02+w02Krw0
  PR控制器在 w 0 w_0 w0处的增益接近于无限大,在其他频率下增益低,能够有效地抑制扰动信号。可以把PR看作带宽极窄的二阶带通滤波器。

  下图为PR控制器的波特图:(注:横坐标单位是rad/s,可以右键点击“属性”–>“单位”–>“频率”–>“HZ”)
在这里插入图片描述
  附matlab绘图代码:

% % %理想PR控制器Bode图
Kr = 1;Kp = 1;wo = 100*pi;PR_ideal1 = Kp +tf([Kr,0],[1,0,wo^2]);
Kr = 10;Kp = 1;wo = 100*pi;PR_ideal2 = Kp +tf([Kr,0],[1,0,wo^2]);
bode(PR_ideal1,PR_ideal2);grid on;
legend('Kr=1','Kr=10');
title('PR控制器Bode图')

  理想的PR控制器是完全可以实现对应频率的交流量实现无静差跟踪的,但是在谐振频率附近的频段带宽过于狭窄,而在 w 0 w_0 w0处的增益过高,会使得系统的稳定性不够,当交流信号发生些许偏移时,PR控制器就无法精准工作在预设频率上了,虽然可以通过调节 K r K_r Kr增大带宽,但是会使得增益变化和相位变化明显增大,会造成系统不稳定。由于PR控制器对于电网参数过于敏感,所以通常不在实际中运用。

2 准PR控制器

2.1 准PR控制器传递函数

  为了提高PR控制器抵抗网侧频率干扰的能力,对PR控制器进行改进,改进后的传递函数如下所示:
G P R ( s ) = K p + 2 K r w c s s 2 + 2 w c s + w 0 2 G_{PR}(s)=K_p+\frac{2K_rw_cs}{s^2+2w_cs+w_0^2} GPR(s)=Kp+s2+2wcs+w022Krwcs
  其中 w c w_c wc为截止频率,代表控制器跟踪参考信号的响应速度
  准PR控制器的增益函数:
∣ G P R ( s ) ∣ s = j w 0 = K p + K r |G_{PR}(s)|_{s=jw_0}=K_p+K_r GPR(s)s=jw0=Kp+Kr
  根据准PR增益函数可知,当输入信号频率为 w 0 w_0 w0时,增益为 ( K p + K r ) (K_p+K_r) (Kp+Kr),不再像PR控制器那样增益无穷大。
  下图为准PR控制器的波特图:
在这里插入图片描述
  附matlab绘图代码:

% % %准PR控制器Bode图
Kp = 1;Kr = 1;wc = 0.5*2*pi;wo = 100*pi;PRs1 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 1;Kr = 10;wc = 0.5*2*pi;wo = 100*pi;PRs2 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
bode(PRs1,PRs2);grid on;
legend('Kr=1','Kr=10');
title('准PR控制器Bode图')

  通过准PR控制器的Bode图可知增益幅度符合传递函数所述,同时调节谐振增益系数可以增大谐振频率附近的频段带宽。

2.2 准PR控制器各系数作用

  使用控制变量,分别对与不同的Kp、Kr、wc进行比较,熟悉不同参数对于控制器带来的影响,如下图所示:

在这里插入图片描述

  1. K p K_p Kp增大,整体增益随之增大,加入 K p K_p Kp是为了调节系统的动态性能;
  2. 根据传递函数可知,PR控制器在 w 0 w_0 w0处的增益不再是无穷大,而是 20 l o g ( K p + K r ) 20log(K_p+K_r) 20log(Kp+Kr),如上图,当 K p 、 w c K_p、w_c Kpwc相同时,控制器的增益随 K r K_r Kr增大而增大,而谐振频率附近的带宽也有所增加,所以调节 K r K_r Kr使得准PR控制器有足够大的增益,实现零稳态误差;
  3. K p 、 K r K_p、K_r KpKr相同时,增加 w c w_c wc可以提升带宽,加快响应速度,但是可能会引入高频噪声,根据国际规定,电网侧波动的范围为: ± 0.5 H z \pm0.5Hz ±0.5Hz,对应截止频率最值为: w c m a x = 3.14 r a d / s w_{cmax}=3.14rad/s wcmax=3.14rad/s,所以 w c w_c wc的取值范围为: 0   3.14 r a d / s 0~3.14rad/s 0 3.14rad/s,通常选取 0.628 r a d / s 0.628rad/s 0.628rad/s

  附matlab绘图代码:

% % %使用控制变量,分别对与不同的Kp、Kr、wc进行比较,熟悉不同参数对于控制器带来的影响
figure()
subplot(1,3,1)
Kp = 1;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;PRs1 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 10;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;PRs2 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 100;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;PRs3 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
bode(PRs1,PRs2,PRs3);grid on;
legend('KP=1','KP=10','KP=100');title('变KP')

subplot(1,3,2)
Kp = 1;Kr = 10;wc = 0.5*2*pi;wo = 100*pi;PRs1 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 1;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;PRs2 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 1;Kr = 1000;wc = 0.5*2*pi;wo = 100*pi;PRs3 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
bode(PRs1,PRs2,PRs3);grid on;
legend('Kr=10','Kr=100','Kr=1000');title('变Kr')

subplot(1,3,3)
Kp = 1;Kr = 100;wc = 0.1*2*pi;wo = 100*pi;PRs1 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 1;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;PRs2 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
Kp = 1;Kr = 100;wc = 1*2*pi;wo = 100*pi;PRs3 = Kp+tf([2*Kr*wc,0],[1 2*wc wo*wo]);
bode(PRs1,PRs2,PRs3);grid on;
legend('wc=0.1*2*pi','wc=0.5*2*pi','wc=1*2*pi');title('变wc')

3 PR控制器传递函数离散化

3.1 Matlab实现PR控制器传递函数离散化

在进行理论分析时,Matlab实现离散化很方便。
  当 K p = 10 、 K r = 100 、 w c = 0.5 ∗ 2 ∗ π 、 w o = 100 π K_p=10、K_r=100、wc=0.5*2*\pi、wo=100\pi Kp=10Kr=100wc=0.52πwo=100π时,连续时间模型为:
在这里插入图片描述
  当采样时间 T s = 1 0 − 6 Ts=10^{-6} Ts=106时,其他参数不变,离散时间模型为:
在这里插入图片描述

  附matlab转换代码:(注:表达式后面不要加“ ; ”,静态检查的警告忽略)

% % % 准PR控制器传递函数离散化,其中Ts、Kp、Kr、wo、wc自定义输入
Ts = 1*10^-6;Kp = 10;Kr = 100;wc = 0.5*2*pi;wo = 100*pi;
sysc = Kp+tf([2*Kr*wc,0],[1,2*wc,wo*wo])%sysc为连续时间模型
sysd = c2d(sysc,Ts,'tustin')%sysd为带采样时间Ts的离散时间模型

3.2 计算推导实现PR控制器传递函数离散化

  在DSP或单片机中对于仅改变 K p 、 K r 、 w c 、 w o K_p、K_r、wc、wo KpKrwcwo离散化传递函数可过程借助编程得到,而不需要借助三方软件计算得到离散化传递函数,故而具备离散化的计算推导能力是很有必要的。
  使用Tustin变换(大多数DSP厂家算法库的选择), s = 2 T s z − 1 z + 1 s=\frac{2}{T_s}\frac{z-1}{z+1} s=Ts2z+1z1,带入PR传递函数,便可以得到PR控制器的差分方程,再根据差分方程得到离散域表达式(二者只是形式不一样),根据Z域表达式进行代码实现。
差分方程:
Y ( z ) X z = a 0 + a 1 z − 1 + a 2 z − 2 + . . . + a k z − k b 0 + b 1 z − 1 + b 2 z − 2 + . . . + b k z − k \frac{Y(z)}{X{z}}=\frac{a_0+a_1z^{-1}+a_2z^{-2}+...+a_kz^{-k}}{b_0+b_1z^{-1}+b_2z^{-2}+...+b_kz^{-k}} XzY(z)=b0+b1z1+b2z2+...+bkzka0+a1z1+a2z2+...+akzk
  Z域表达式:
b 0 y [ n ] + b 1 y [ n − 1 ] + b 2 y [ n − 2 ] + . . . + b k y [ n − k ] = a 0 x [ n ] + a 1 x [ n − 1 ] + a 2 x [ n − 2 ] + . . . + a k x [ n − k ] b_0y[n]+b_1y[n-1]+b_2y[n-2]+...+b_ky[n-k]=a_0x[n]+a_1x[n-1]+a_2x[n-2]+...+a_kx[n-k] b0y[n]+b1y[n1]+b2y[n2]+...+bky[nk]=a0x[n]+a1x[n1]+a2x[n2]+...+akx[nk]
  PR控制器离散化推导过程:
P R ( s ) = K p + 2 K r w c s s 2 + 2 w c s + w 0 2 = s p K + 2 w c s K p + w 0 2 K p + 2 K r w c s s 2 + 2 w c s + w 0 2 = s 2 K p + 2 w c s ( K p + K r ) + w 0 2 K p s 2 + 2 w c s + w 0 2 \begin{aligned} PR(s)&=K_p+\frac{2K_rwcs}{s^2+2wcs+w_0^2}\\ &=\frac{s^K_p+2wcsK_p+w_0^2K_p+2K_rwcs}{s^2+2wcs+w0^2}\\ &=\frac{s^2K_p+2wcs(K_p+K_r)+w_0^2K_p}{s^2+2wcs+w_0^2}\\ \end{aligned} PR(s)=Kp+s2+2wcs+w022Krwcs=s2+2wcs+w02spK+2wcsKp+w02Kp+2Krwcs=s2+2wcs+w02s2Kp+2wcs(Kp+Kr)+w02Kp
  将 s = 2 T s z − 1 z + 1 s=\frac{2}{T_s}\frac{z-1}{z+1} s=Ts2z+1z1带入上式,得差分方程:
P R ( z ) = Y ( z ) X ( z ) = K p ( 2 T s z − 1 z + 1 ) 2 + ( 2 w c K p + 2 w c K r ) ( 2 T s z − 1 z + 1 ) + K p w 0 2 ( 2 T s z − 1 z + 1 ) 2 + 2 w c ( 2 T s z − 1 z + 1 ) + w 0 2 = 4 K p T s 2 ( z 2 − 2 z + 1 ) + 4 w c T s ( K p + K r ) ( z 2 − 1 ) + K p w 0 2 ( z 2 + 2 z + 1 ) 4 T 2 ( z 2 − 2 z + 1 ) + 4 w c T s ( z 2 − 1 ) + w 0 2 ( z 2 + 2 z + 1 ) = ( 4 K p T s 2 + 4 w c T s + K p w 0 2 ) z 2 + ( − K p T s 2 + 2 K p w 0 2 ) z + [ 4 K p T s 2 − 4 w c T s ( K p + K r ) + K p w 0 2 ] ( 4 T s 2 + 4 w c T s + w 0 2 ) z 2 + ( − 8 T s 2 + 2 w 0 2 ) z + ( 4 T s 2 − 4 w c T s + w 0 2 ) = [ 4 K p T s 2 + 4 w c T s ( K p + K r ) + K p w 0 2 ] + ( − 8 K p T s 2 + 2 K p w 0 2 ) z − 1 + [ 4 K p T s 2 − 4 w c T s ( K p + K r ) + K p w 0 2 ] z − 2 ( 4 T s 2 + 4 w c T s + w 0 2 ) + ( − 8 T s 2 + 2 w 0 2 ) z − 1 + ( 4 T s 2 − 4 w c T s + w 0 2 ) z − 2 \begin{aligned} PR(z)=\frac{Y(z)}{X(z)}&=\frac{K_p(\frac{2}{T_s}\frac{z-1}{z+1})^2+(2wcK_p+2wcK_r)(\frac{2}{T_s}\frac{z-1}{z+1})+K_pw_0^2}{(\frac{2}{T_s} \frac{z-1}{z+1})^2+2wc(\frac{2}{T_s}\frac{z-1}{z+1})+w_0^2}\\ &=\frac{\frac{4K_p}{T_s^2}(z^2-2z+1)+\frac{4wc}{T_s}(K_p+K_r)(z^2-1)+K_pw_0^2(z^2+2z+1)}{\frac{4}{T^2}(z^2-2z+1)+\frac{4wc}{T_s}(z^2-1)+w_0^2(z^2+2z+1)}\\ &=\frac{(\frac{4K_p}{T_s^2}+\frac{4wc}{T_s}+K_pw_0^2)z^2+(-\frac{K_p}{T_s^2}+2K_pw_0^2)z+[\frac{4K_p}{T_s^2}-\frac{4wc}{T_s}(K_p+K_r)+K_pw_0^2]}{(\frac{4}{T_s^2}+\frac{4wc}{T_s}+w_0^2)z^2+(-\frac{8}{T_s^2}+2w_0^2)z+(\frac{4}{T_s^2}-\frac{4wc}{T_s}+w_0^2)}\\ &=\frac{[\frac{4K_p}{T_s^2}+\frac{4wc}{T_s}(K_p+K_r)+K_pw_0^2]+(-\frac{8K_p}{T_s^2}+2K_pw_0^2)z^{-1}+[\frac{4K_p}{T_s^2}-\frac{4wc}{T_s}(K_p+K_r)+K_pw_0^2]z^{-2}}{(\frac{4}{T_s^2}+\frac{4wc}{T_s}+w_0^2)+(-\frac{8}{T_s^2}+2w_0^2)z^{-1}+(\frac{4}{T_s^2}-\frac{4wc}{T_s}+w_0^2)z^{-2}}\\ \end{aligned} PR(z)=X(z)Y(z)=(Ts2z+1z1)2+2wc(Ts2z+1z1)+w02Kp(Ts2z+1z1)2+(2wcKp+2wcKr)(Ts2z+1z1)+Kpw02=T24(z22z+1)+Ts4wc(z21)+w02(z2+2z+1)Ts24Kp(z22z+1)+Ts4wc(Kp+Kr)(z21)+Kpw02(z2+2z+1)=(Ts24+Ts4wc+w02)z2+(Ts28+2w02)z+(Ts24Ts4wc+w02)(Ts24Kp+Ts4wc+Kpw02)z2+(Ts2Kp+2Kpw02)z+[Ts24KpTs4wc(Kp+Kr)+Kpw02]=(Ts24+Ts4wc+w02)+(Ts28+2w02)z1+(Ts24Ts4wc+w02)z2[Ts24Kp+Ts4wc(Kp+Kr)+Kpw02]+(Ts28Kp+2Kpw02)z1+[Ts24KpTs4wc(Kp+Kr)+Kpw02]z2
  Z域表达式:
b 0 y [ n ] + b 1 y [ n − 1 ] + b 2 y [ n − 2 ] = a 0 x [ n ] + a 1 x [ n − 1 ] + a 2 x [ n − 2 ] b_0y[n]+b_1y[n-1]+b_2y[n-2]=a_0x[n]+a_1x[n-1]+a_2x[n-2] b0y[n]+b1y[n1]+b2y[n2]=a0x[n]+a1x[n1]+a2x[n2]
{ a 0 = ( 4 K p T s 2 + 4 w c T s ( K p + K r ) + K p w 0 2 ) a 1 = ( − 8 K p T s 2 + 2 K p w 0 2 ) a 2 = [ 4 K p T s 2 − 4 w c T s ( K p + K r ) + K p w 0 2 ] { b 0 = ( 4 T s 2 + 4 w c T s + w 0 2 ) b 1 = ( − 8 T s 2 + 2 w 0 2 ) b 2 = ( 4 T s 2 − 4 w c T s + w 0 2 ) \begin{cases} a_0=(\frac{4K_p}{T_s^2}+\frac{4wc}{T_s}(K_p+K_r)+K_pw_0^2)\\ a_1=(-\frac{8K_p}{T_s^2}+2K_pw_0^2)\\ a_2=[\frac{4K_p}{T_s^2}-\frac{4wc}{T_s}(K_p+K_r)+K_pw_0^2]\\ \end{cases} \begin{cases} b_0=(\frac{4}{T_s^2}+\frac{4wc}{T_s}+w_0^2)\\ b_1=(-\frac{8}{T_s^2}+2w_0^2)\\ b_2=(\frac{4}{T_s^2}-\frac{4wc}{T_s}+w_0^2)\\ \end{cases} a0=(Ts24Kp+Ts4wc(Kp+Kr)+Kpw02)a1=(Ts28Kp+2Kpw02)a2=[Ts24KpTs4wc(Kp+Kr)+Kpw02] b0=(Ts24+Ts4wc+w02)b1=(Ts28+2w02)b2=(Ts24Ts4wc+w02)
  通常会将差分方程表示成:
Y ( z ) X ( z ) = a 0 + a 1 z − 1 + a 2 z − 2 + . . . + a k z − k 1 + b 1 z − 1 + b 2 z − 2 + . . . + b k z − k y [ n ] + b 1 y [ n − 1 ] + b 2 y [ n − 2 ] = a 0 x [ n ] + a 1 x [ n − 1 ] + a 2 x [ n − 2 ] \frac{Y(z)}{X(z)}=\frac{a_0+a_1z^{-1}+a_2z^{-2}+...+a_kz^{-k}}{1+b_1z^{-1}+b_2z^{-2}+...+b_kz^{-k}}\\ y[n]+b_1y[n-1]+b_2y[n-2]=a_0x[n]+a_1x[n-1]+a_2x[n-2]\\ X(z)Y(z)=1+b1z1+b2z2+...+bkzka0+a1z1+a2z2+...+akzky[n]+b1y[n1]+b2y[n2]=a0x[n]+a1x[n1]+a2x[n2]
  故而在代码实现中可以看到 a 0 、 a 1 、 a 2 、 b 1 、 b 2 a_0、a_1、a_2、b_1、b_2 a0a1a2b1b2各系数除以 b 0 b_0 b0

4 总结

  比例增益系数 K p K_p Kp和谐振增益系数 K r K_r Kr主要影响控制器的增益和相位裕度,截止频率 w c w_c wc主要影响谐振频率 w o w_o wo处的带宽,调节 K p K_p Kp K r K_r Kr可以优化系统的动态性能和稳态性能,调节 w c w_c wc可以改善系统的抗干扰能力。

相关资源附件:

PR控制器基于Matlab绘制Bode图
准PR控制器程序

  • 42
    点赞
  • 190
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
在MATLAB中实现一个简单的比例-积分-微分(PID)控制器可以通过以下步骤进行: 1. 定义系统模型:根据你要控制的系统,定义系统的传递函数或状态空间模型。 2. 设计PID控制器:使用PID控制器的比例增益(Kp)、积分时间(Ti)和微分时间(Td)参数进行设计。可以根据系统响应的要求和调整需求来选择这些参数。 3. 实现PID控制器:使用MATLAB的控制系统工具箱或自己编写代码来实现PID控制器。可以使用PID函数或者用MATLAB中的反馈函数结合比例、积分和微分控制器来构建一个闭环控制系统。 以下是一个简单的代码示例,演示如何在MATLAB中实现一个PID控制器: ```matlab % 定义系统传递函数 G = tf([1], [1 2 1]); % 设计PID控制器参数 Kp = 1; Ti = 2; Td = 0.5; % 创建PID控制器对象 C = pid(Kp, Ti, Td); % 创建闭环系统 sys_cl = feedback(C*G, 1); % 绘制闭环系统的阶跃响应 t = 0:0.01:10; step(sys_cl, t); ``` 这个例子中,我们首先定义了一个二阶传递函数G,然后设定了PID控制器的参数。接下来,我们使用pid函数创建了一个PID控制器对象C,并通过feedback函数将系统G和控制器C连接在一起,形成一个闭环控制系统sys_cl。最后,我们绘制了闭环系统的阶跃响应。 请注意,实际的控制器设计和实现可能会涉及到更复杂的系统模型和调整方法,这只是一个简单的示例。你可以根据具体的应用需求和系统特性进行调整和修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值