N-S方程(二)-各坐标系下N-S方程的形式

N-S方程

ρ d V d t = ρ g − ∇ p + μ ∇ 2 V \rho\frac{dV}{dt}=\rho g-\nabla p + \mu\nabla^2V ρdtdV=ρgp+μ2V

ρ ( ∂ V ∂ t + ( V ⋅ ∇ ) V ) = ρ g − ∇ p + μ ∇ 2 V \rho\big( \frac{\partial V}{\partial t} + (V\cdot \nabla)V \big)=\rho g-\nabla p + \mu\nabla^2V ρ(tV+(V)V)=ρgp+μ2V

∂ V ∂ t + ( V ⋅ ∇ ) V = g − 1 ρ ∇ p + μ ρ ∇ 2 V \frac{\partial V}{\partial t} + (V\cdot \nabla)V = g-\frac{1}{\rho}\nabla p + \frac{\mu}{\rho}\nabla^2V tV+(V)V=gρ1p+ρμ2V

d V d t = ∂ v i ∂ t + ( V ⋅ ∇ ) V = ∂ v i ∂ t + v j ∂ v i ∂ x j \frac{dV}{dt} = \frac{\partial v_i}{\partial t}+(V\cdot \nabla)V = \frac{\partial v_i}{\partial t}+v_j\frac{\partial v_i}{\partial x_j} dtdV=tvi+(V)V=tvi+vjxjvi

笛卡尔坐标系下的N-S方程

∂ v i ∂ t + v j ∂ v i ∂ x j = g − 1 ρ ∂ p ∂ x i + μ ρ ∂ 2 v i ∂ x j 2 \frac{\partial v_i}{\partial t}+v_j\frac{\partial v_i}{\partial x_j}=g-\frac{1}{\rho}\frac{\partial p}{\partial x_i}+\frac{\mu}{\rho}\frac{\partial^2v_i}{\partial x^2_j} tvi+vjxjvi=gρ1xip+ρμxj22vi

圆柱坐标系下的 N-S 方程是描述流体在圆柱坐标系下的运动状态的方程。它包括连续性方程、动量方程和能量方程,其中动量方程包括雷诺应力项。 下面给出圆柱坐标系下的 N-S 方程: 连续性方程: $$\frac{\partial \rho}{\partial t}+\frac{1}{r}\frac{\partial}{\partial r}(r\rho u)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0$$ 动量方程: $$\frac{\partial}{\partial t}(\rho u)+\frac{1}{r}\frac{\partial}{\partial r}(\rho u^2)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho u v)+\frac{\partial}{\partial z}(\rho u w)=-\frac{\partial p}{\partial r}+\frac{\tau_{rr}}{\rho r}-\frac{\tau_{\theta r}}{\rho r}-\frac{\tau_{zr}}{\rho}+F_r$$ $$\frac{\partial}{\partial t}(\rho v)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uv)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v^2)+\frac{\partial}{\partial z}(\rho v w)=-\frac{1}{r}\frac{\partial p}{\partial \theta}-\frac{\tau_{r\theta}}{\rho r}-\frac{\tau_{\theta \theta}}{\rho r}-\frac{\tau_{z\theta}}{\rho}+F_\theta$$ $$\frac{\partial}{\partial t}(\rho w)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uw)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho vw)+\frac{\partial}{\partial z}(\rho w^2)=-\frac{\partial p}{\partial z}-\frac{\tau_{rz}}{\rho r}-\frac{\tau_{\theta z}}{\rho r}-\frac{\tau_{zz}}{\rho}+F_z$$ 其中,$\rho$ 是流体密度,$u,v,w$ 分别是流体在 $r,\theta,z$ 三个方向上的速度分量,$p$ 是流体压力,$\tau_{ij}$ 是雷诺应力张量,$F_r,F_\theta,F_z$ 是外力对流体的作用力。 雷诺应力张量是描述湍流效应的一种物理量,它表示流体中不同位置处的速度差异会产生的附加应力。在圆柱坐标系下,雷诺应力张量的各个分量可以表示为: $$\tau_{rr}=-2\mu\frac{\partial u}{\partial r}-\frac{2}{3}\mu(\frac{\partial u}{\partial r}+\frac{2}{r}u)$$ $$\tau_{\theta r}=-\mu(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial \theta}-\frac{v}{r})$$ $$\tau_{zr}=-\mu(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z})$$ $$\tau_{r\theta}=-\mu(\frac{1}{r}\frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial r}-\frac{u}{r})$$ $$\tau_{\theta \theta}=-2\mu\frac{\partial v}{\partial \theta}-\frac{2}{3}\mu(\frac{\partial v}{\partial \theta}-\frac{u}{r})$$ $$\tau_{z\theta}=-\mu(\frac{\partial v}{\partial z}+\frac{1}{r}\frac{\partial w}{\partial \theta})$$ $$\tau_{rz}=-\mu(\frac{\partial w}{\partial z}+\frac{\partial u}{\partial r})$$ 其中,$\mu$ 是流体的动力粘度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值