安装cuda+cuDNN

一、概述

学习或使用Tensorflow、caffe、Pytorch等深度学习框架时,往往需要使用GPU加速计算。因为深度学习框架有不同的版本,显卡有不同的类型,显卡驱动程序也有不同的版本,还有不同的操作系统,所以在安装GPU的各类驱动程序时容易出各种问题。本文一方面总结安装GPU驱动的要点,另一方面记录成功的安装示例。(版本更新还贼快!生搬硬套容易搞炸!)

二、安装GPU驱动的要点

  1. 确定操作系统的类型和版本,常用的有windows、ubuntu、centos等,后两个操作系统是linux内核的。
  2. 检查当前系统是否已经安装相应的驱动,如果安装了老版本的就需要卸载。
  3. 明确安装驱动是与哪个软件配合使用,并选择正确的CUDA和cuDNN版本。比如与Tensorflow配合使用,就可以参考Tensorflow官方文档确定GPU驱动版本。
  4. 下载相应的安装包(如果下载较慢,可以复制链接使用迅雷下载)
    CUDA下载网址
    在这里插入图片描述
    cuDNN下载网址
    在这里插入图片描述

三、成功安装的样例

样例1. Win10+CUDA-v10.1

安装环境描述

  • Windows10
  • GeForce MX150
  • cuda_10.1.243_426.00_win10.exe
  • cudnn-10.1-windows10-x64-v7.6.5.32
  • tensorflow2.3.1

安装步骤

  1. 打开cmd ,win+R输入cmd,执行nvcc -V查看cuda版本,如果没有安装信息,直接安装新版本即可;如果安装了旧版本的cuda,需要先卸载。

  2. 根据tensorflow版本确定需要安装的cuda版本为v10.1
    在这里插入图片描述

  3. 从官网下载cuda安装程序cuda_10.1.243_426.00_win10.exe,点击运行即可安装。

  4. 安装完成后,在cmd命令行中执行nvcc -V即可查看到cuda安装信息。
    在这里插入图片描述

  5. 安装对应版本的cuDNN-v7.6,下载该文件后解压压缩包,可看到bin、include、lib目录,需要将这3个文件复制到cuda文件夹。可以发现这3个目录本来就存在了,这说明cuDNN相当于是补充了CUDA的库目录。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    愉快的安装完成了,嘻嘻。

样例2. Ubuntu20.04+CUDA-v11.0

安装环境描述

  • Ubuntu20.04
  • GeForce MX150
  • cuda_11.0.2_450.51.05_linux.run
  • cudnn-11.2-linux-x64-v8.1.1.33.tgz
  • tensorflow2.4.1

安装步骤

  1. 在命令窗口执行,即可安装。
sudo apt install nvidia-cuda-toolkit
  1. 使用nvcc --version可以查看版本信息,由此可以看出使用命令行的方式直接安装的驱动版本较老,由于tensorflow2.4.1依赖libcudart.so.11.0,所以最好是安装v11以上的CUDA版本,这样可以避免手动去下载libcudart.so.11.0。
    在这里插入图片描述
  2. 由于安装了老版本的CUDA,所以需要卸载。值得注意的是不同的安装方式卸载的方法也不同,参见官网的描述。我使用apt-get直接安装的,那么/usr/bin下面就没有对应的卸载程序,然后我也忘记了包的名字。
    在这里插入图片描述可以使用history N查看最近执行的命令,发现安装的包的名字为nvidia-cuda-toolkit
    在这里插入图片描述
  3. 执行命令,卸载cuda,在卸载的过程中会提示相应的自动安装的依赖不再使用,使用sudo apt autoremove 来卸载。值得注意的是sudo apt autoremove是非常危险的,它可能卸载掉正在使用的软件。原因是后来安装的软件可能依赖先前自动安装的依赖项,这还可能与操作系统版本有关。高版本的操作操作系统,笔者认为可以放心使用这个命令,问题不大。
sudo apt-get --purge remove nvidia-cuda-toolkit

在这里插入图片描述

  1. 执行命令,清除依赖
sudo apt autoremove
  1. 切换到包含cuda安装包的目录,执行以下命令,发现报错了。尝试禁用nouveau,sudo vim /etc/modprobe.d/blacklist-nouveau.conf,添加两行内容如下。执行内核指令sudo update-initramfs -u,然后重启电脑。
sudo ./cuda_11.0.2_450.51.05_linux.run

查看报错原因blacklist-nouveau.conf中添加

blacklist nouveau
options nouveau modeset=0

然而,依然不能正确安装。查看是否安装了nvidia显卡驱动,sudo lshw -c video,在configuration中并没有看到driver,因此可以看出并没有安装显卡驱动。
在这里插入图片描述

  1. NVIDIA官网下载相应的驱动,进行安装,官网有引导,按照指引搜索即可。安装成功后再次执行sudo lshw -c video,可以看到驱动安装成功。也可以执行nvidia-smi查看驱动是否安装成功。特别说明:出现找不到nvidia驱动也可能因为系统自动更新了内核,可以执行如下命令解决。
ls /usr/src |grep nvidia //查看当前显卡驱动版本,如果有说明驱动已经安装,但与内核不兼容
sudo apt-get install dkms
sudo dkms install -m nvidia -v 495.44 //执行时看上去在编译内核模块

在这里插入图片描述
9. 下载cuda对应版本的cudnn,解压并拷贝到相应的路径。尝试过通过deb包安装cudnn,失败。

cp include/* /usr/local/cuda-11.0/include
cp lib64/*  /usr/local/cuda-11.0/lib64/

命令整理

# 查看显卡驱动
nvidia-detector

参考文献

  1. win10安装CUDA9.0+cuDNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值