对抗神经网络 (GAN) 的深入了解

本文深入探讨了生成对抗网络(GAN)的原理,包括GAN的基本结构、工作方式以及背后的博弈论思想。通过白话解释和生物进化的类比,阐述了生成器与鉴别器如何相互作用以提升生成样本的质量,直至达到以假乱真的境界。文章还介绍了GAN的理论知识,包括最大似然估计和训练过程,最后提到了GAN存在的问题和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GAN的英文全称是Generative Adversarial Network,中文名是生成对抗网络,它由两个部分组成,一个是生成器(generative),还有一个是鉴别器,与生成器是敌对(Adversarial)关系。

一、GAN 简介

GAN的想法非常巧妙,它会创建两个不同的对立的网络,目的是让一个网络生成与训练集不同的且足以让另外一个网络难辨真假的样本

“图灵学习”本质上可以对 GAN 进行概括。相关的“图灵测试”是广为人知的概念,即计算机试图与人对话并让人误以为它也是一个正常人类。“图灵测试”类似于 GAN 中 generator(生成器)的目标,试图欺骗的是对应的 ‘adversary’— discriminator (鉴别器)。

GAN可以用任何形式的 generator 和 discriminator,不一定非得使用神经网络。而神经网络被广泛使用的主要原因是它一种通用函数逼近算法 (universal function approximator),即我们能够使用大量节点的神经网络来模拟任何非线性的 Input 与 Output 之间的函数,相对其他方法具有更高的自由度,不会因为算法本身的能力而受限。对于 generator 或discriminator 没有任何形式的限制,两者的形式也不必要相同。
这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南淮北安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值