推荐系统(五)——SIGIR‘21用反事实推断缓解点击诱饵,还在为标题党烦躁吗?请看这篇文章

在这里插入图片描述

Clicks can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue
https://dl.acm.org/doi/pdf/10.1145/3404835.3462962

本文将用到以下相关知识:
反事实推断
TE、NDE、TIE

背景

在生活中,无论我们用什么软件(购物、资讯等),都会遇到这样的情况:看到的封面和标题跟点进去的内容不匹配,即标题党。而这些欺骗性的信息会使用户体检变差,而因为用户之前由于标题点击了item,会使得模型在学习,推荐的时候也会推荐这类item,这就造成了恶心循环。
本文主要通过构建因果图来缓解标题党这类不良item对用户体验造成的损害,主要贡献如下:

  • 强调通过仅使用点击数据来缓解**点击诱饵(标题党)**问题的重要性,并利用新的因果图来制定推荐流程
  • 在推荐中引入反事实推理来缓解点击诱饵问题,并提出了一个反事实推荐框架,该框架可应用于任何以项目特征为输入的推荐模型(易集成

方法

本文所用理论与MACR框架中所用理论一样,都是采用反事实推断,并且涉及TE,NDE,TIE等相关知识,这里不再赘述,不熟悉的小伙伴可到MACR中阅读。不过MACR是用于纠正流行性偏差的,本文方法是针对“标题党”的,并且构建过程也存在一些区别,下面我们详细展开。

因果图

在这里插入图片描述


原始的因果图如图a所示,我们在做推荐的时候,仅考虑单纯融合曝光特征(exposure feature)和内容特征(content feature),将融合后的特征和用户特征结合用于预测推荐分数。而上述过程忽略了用户看到标题、封面等信息时对点击的直接影响,因此作者构建了新的因果图(图b)。
在这里插入图片描述

通过反事实推断,我们可以得到图c,d
T E = Y u , i , e − Y u , i ∗ , e ∗ TE=Y_{u,i,e}-Y_{u,i^*,e^*} TE=Yu,i,eYu,i,e
N D E = Y u , i ∗ , e − Y u , i ∗ , e ∗ NDE=Y_{u,i^*,e}-Y_{u,i^*,e^*} NDE=Yu,i,eYu,i,e
T I E = T E − N D E = Y u , i , e − Y u , i ∗ , e TIE=TE-NDE=Y_{u,i,e}-Y_{u,i^*,e} TIE=TENDE=Yu,i,eYu,i,e
i ∗ = f I ( e ∗ , t ∗ ) i^*=f_I(e*,t*) i=fI(e,t),fi为特征融合函数

框架设计

评分函数 Y = f Y ( ⋅ ) Y=f_Y(·) Y=fY()的设计
为了方便使用,以及减少对现有模型的修改,做到易集成性,作者并没有直接将u,i,e作为输入,而是late-fusion的方式:
f Y ( u , i , e ) = f ( Y u , i , Y u , e ) f_Y(u,i,e)=f(Y_{u,i},Y_{u,e}) fY(u,i,e)=f(Yu,i,Yu,e),而其中的 Y u , i , Y u , e Y_{u,i},Y_{u,e} Yu,i,Yu,e可以由现有的模型得到, f ( ) f() f()是一种融合策略,采用MUL的方式:
f ( Y u , i , Y u , e ) = Y u , i ∗ σ ( Y u , e ) f(Y_{u,i},Y_{u,e})=Y_{u,i}*\sigma(Y_{u,e}) f(Yu,i,Yu,e)=Yu,iσ(Yu,e)
训练过程
训练采用多任务的方式训练,损失函数如下:
∑ ( u , i , Y u , i ‾ ) ∈ D ~ l ( Y u , i , e , Y u , i ‾ ) + α l ( Y u , e , Y u , i ‾ ) \sum_{(u,i,\overline{Y_{u,i}})\in\tilde{D}}{l(Y_{u,i,e},\overline{Y_{u,i}})+\alpha l(Y_{u,e},\overline{Y_{u,i}})} (u,i,Yu,i)D~l(Yu,i,e,Yu,i)+αl(Yu,e,Yu,i)
Y u , i ‾ \overline{Y_{u,i}} Yu,i为标签,u,i为特征,a为超参数。由TIE可知,我们需要得到 Y u , i , e , Y u , i ∗ , e Y_{u,i,e},Y_{u,i^*,e} Yu,i,eYu,i,e,而在实际训练过程总参考值 i ∗ i^* i表示不将i作为特征输入,因此可以用 Y u , e Y_{u,e} Yu,e来表示 Y u , i ∗ , e Y_{u,i^*,e} Yu,i,e
推理阶段
推理阶段分别得到 Y u , i , e , Y u , i ∗ , e Y_{u,i,e},Y_{u,i^*,e} Yu,i,eYu,i,e然后计算TIE。
Y C R = T I E = Y u , i , e − Y u , i ∗ , e = f ( Y u , i , Y u , e ) − f ( c u , Y u , e ) = Y u , i , e − c u ∗ σ ( Y u , e ) Y_{CR}=TIE=Y_{u,i,e}-Y_{u,i^*,e}=\\f(Y_{u,i},Y_{u,e})-f(c_u,Y_{u,e})=Y_{u,i,e}-c_u*\sigma (Y_{u,e}) YCR=TIE=Yu,i,eYu,i,e=f(Yu,i,Yu,e)f(cu,Yu,e)=Yu,i,ecuσ(Yu,e)
c u = E ( Y u , I ) = 1 ∣ I ∣ ∑ i ∈ I Y u , i c_u=E(Y_{u,I})=\frac{1}{|I|}\sum_{i\in I}{Y_{u,i}} cu=E(Yu,I)=I1iIYu,i
因为在训练的时候没有将 i ∗ i^* i作为输入来训练得到 Y u , i ∗ , e Y_{u,i^*,e} Yu,i,e,而是直接用了 Y u , e Y_{u,e} Yu,e。在预测推理过程中,用均值来替代当前(u,i)对应的预测值。

更多内容可以关注“秋枫学习笔记”,感谢大家的支持

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值