推荐系统+因果推断(二)——kdd‘21用反事实推理缓解召回阶段的数据流行度偏差Model-Agnostic Counterfactual Reasoning for EliminatingPopu

本文探讨了如何使用模型泛化因果推理(MACR)来解决推荐系统中的流行数据偏差问题。作者分析了流行偏见的因果影响,并构建了相应的因果图。MACR框架是一个多任务模型,包括用户、物品和流行度的影响。通过反事实推理,文章提出在推理阶段计算总间接效应(TIE),以减轻流行度对推荐结果的影响。实验表明该方法有效,有助于提供更个性化的推荐,而非单纯依赖流行度。

 

Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System

https://dl.acm.org/doi/pdf/10.1145/3447548.3467289

 本文中将会用到因果推断中反事实部分的知识,具体内容可以查看之前的文章,这里就不对反事实相关内容重复叙述了。

背景

        背景和上一篇的背景类似,都是为了解决流行数据偏差问题。想要详细了解例子的小伙伴可以查看上一篇文章(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值