ORB-SLAM2代码详解01: ORB-SLAM2代码运行流程

pdf版本笔记的下载地址: ORB-SLAM2代码详解01_ORB-SLAM2代码运行流程,排版更美观一点,这个网站的默认排版太丑了(访问密码:3834)

可以看看我录制的视频5小时让你假装大概看懂ORB-SLAM2源码

运行官方Demo

以TUM数据集为例,运行Demo的命令:

./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUM1.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

rgbd_tum.cc的源码:

int main(int argc, char **argv) {
    // 判断输入参数个数
    if (argc != 5) {
        cerr << endl << "Usage: ./rgbd_tum path_to_vocabulary path_to_settings path_to_sequence path_to_association" << endl;
        return 1;
    }

	// step1. 读取图片及左右目关联信息
    vector<string> vstrImageFilenamesRGB;
    vector<string> vstrImageFilenamesD;
    vector<double> vTimestamps;
    string strAssociationFilename = string(argv[4]);
    LoadImages(strAssociationFilename, vstrImageFilenamesRGB, vstrImageFilenamesD, vTimestamps);	
	
    // step2. 检查图片文件及输入文件的一致性
    int nImages = vstrImageFilenamesRGB.size();
    if (vstrImageFilenamesRGB.empty()) {
        cerr << endl << "No images found in provided path." << endl;
        return 1;
    } else if (vstrImageFilenamesD.size() != vstrImageFilenamesRGB.size()) {
        cerr << endl << "Different number of images for rgb and depth." << endl;
        return 1;
    }

	// step3. 创建SLAM对象,它是一个 ORB_SLAM2::System 类型变量
    ORB_SLAM2::System SLAM(argv[1], argv[2], ORB_SLAM2::System::RGBD, true);
    
    vector<float> vTimesTrack;
    vTimesTrack.resize(nImages);
    cv::Mat imRGB, imD;
    // step4. 遍历图片,进行SLAM
    for (int ni = 0; ni < nImages; ni++) {
        // step4.1. 读取图片
        imRGB = cv::imread(string(argv[3]) + "/" + vstrImageFilenamesRGB[ni], CV_LOAD_IMAGE_UNCHANGED);
        imD = cv::imread(string(argv[3]) + "/" + vstrImageFilenamesD[ni], CV_LOAD_IMAGE_UNCHANGED);
        double tframe = vTimestamps[ni];
        // step4.2. 进行SLAM
        SLAM.TrackRGBD(imRGB, imD, tframe);
        // step4.3. 加载下一张图片
        double T = 0;
        if (ni < nImages - 1)
            T = vTimestamps[ni + 1] - tframe;
        else if (ni > 0)
            T = tframe - vTimestamps[ni - 1];

        if (ttrack < T)
            usleep((T - ttrack) * 1e6);
    }

    // step5. 停止SLAM
    SLAM.Shutdown();
}

运行程序rgbd_tum时传入了一个重要的配置文件TUM1.yaml,其中保存了相机参数ORB特征提取参数:

%YAML:1.0

## 相机参数
Camera.fx: 517.306408
Camera.fy: 516.469215
Camera.cx: 318.643040
Camera.cy: 255.313989

Camera.k1: 0.262383
Camera.k2: -0.953104
Camera.p1: -0.005358
Camera.p2: 0.002628
Camera.k3: 1.163314

Camera.width: 640
Camera.height: 480

Camera.fps: 30.0  		# Camera frames per second 
Camera.bf: 40.0			# IR projector baseline times fx (aprox.)
Camera.RGB: 1			# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
ThDepth: 40.0			# Close/Far threshold. Baseline times.
DepthMapFactor: 5000.0	# Deptmap values factor 

## ORB特征提取参数
ORBextractor.nFeatures: 1000		# ORB Extractor: Number of features per image
ORBextractor.scaleFactor: 1.2		# ORB Extractor: Scale factor between levels in the scale pyramid 
ORBextractor.nLevels: 8				# ORB Extractor: Number of levels in the scale pyramid	
ORBextractor.iniThFAST: 20
ORBextractor.minThFAST: 7

阅读代码之前你应该知道的事情

变量命名规则

ORB-SLAM2中的变量遵循一套命名规则:

  • 变量名的第一个字母为m表示该变量为某类的成员变量.
  • 变量名的第一、二个字母表示数据类型:
    • p表示指针类型
    • n表示int类型
    • b表示bool类型
    • s表示std::set类型
    • v表示std::vector类型
    • l表示std::list类型
    • KF表示KeyFrame类型

这种将变量类型写进变量名的命名方法叫做匈牙利命名法.

理解多线程

为什么要使用多线程?

  1. 加快运算速度:

    bool Initializer::Initialize(const Frame &CurrentFrame) {
     	// ...
        thread threadH(&Initializer::FindHomography, this, ref(vbMatchesInliersH), ref(SH), ref(H));
        thread threadF(&Initializer::FindFundamental, this, ref(vbMatchesInliersF), ref(SF), ref(F));
        // ...
    }
    

    开两个线程同时计算两个矩阵,在多核处理器上会加快运算速度.

  2. 因为系统的随机性,各步骤的运行顺序是不确定的.

    Tracking线程不产生关键帧时,LocalMappingLoopClosing线程基本上处于空转的状态.

    Tracking线程产生关键帧的频率和时机不是固定的,因此需要3个线程同时运行,LocalMappingLoopClosing线程不断循环查询Tracking线程是否产生关键帧,产生了的话就处理.

    请添加图片描述

    // Tracking线程主函数
    void Tracking::Track() {
    	// 进行跟踪
        // ...
    	
        // 若跟踪成功,根据条件判定是否产生关键帧
        if (NeedNewKeyFrame())
            // 产生关键帧并将关键帧传给LocalMapping线程
            KeyFrame *pKF = new KeyFrame(mCurrentFrame, mpMap, mpKeyFrameDB);
            mpLocalMapper->InsertKeyFrame(pKF);	
    }
    
    // LocalMapping线程主函数
    void LocalMapping::Run() {
    	// 死循环
        while (1) {
            // 判断是否接收到关键帧
            if (CheckNewKeyFrames()) {
                // 处理关键帧
                // ...
                
                // 将关键帧传给LoopClosing线程
                mpLoopCloser->InsertKeyFrame(mpCurrentKeyFrame);
            }
            
            // 线程暂停3毫秒,3毫秒结束后再从while(1)循环首部运行
            std::this_thread::sleep_for(std::chrono::milliseconds(3));
        }
    }
    
    // LoopClosing线程主函数
    void LoopClosing::Run() {
        // 死循环
        while (1) {
            // 判断是否接收到关键帧
            if (CheckNewKeyFrames()) {
                // 处理关键帧
                // ...
            }
    
            // 查看是否有外部线程请求复位当前线程
            ResetIfRequested();
    
            // 线程暂停5毫秒,5毫秒结束后再从while(1)循环首部运行
            std::this_thread::sleep_for(std::chrono::milliseconds(5));
        }
    }
    

多线程中的锁

为防止多个线程同时操作同一变量造成混乱,引入锁机制:

将成员函数本身设为私有变量(privateprotected),并在操作它们的公有函数内加锁.

class KeyFrame {
protected:
	KeyFrame* mpParent;
    
public:
    void KeyFrame::ChangeParent(KeyFrame *pKF) {
        unique_lock<mutex> lockCon(mMutexConnections);		// 加锁
        mpParent = pKF;
        pKF->AddChild(this);
    }

    KeyFrame *KeyFrame::GetParent() {
        unique_lock<mutex> lockCon(mMutexConnections);		// 加锁
        return mpParent;
    }
}

一把锁在某个时刻只有一个线程能够拿到,如果程序执行到某个需要锁的位置,但是锁被别的线程拿着不释放的话,当前线程就会暂停下来;直到其它线程释放了这个锁,当前线程才能拿走锁并继续向下执行.

  • 什么时候加锁和释放锁?

    unique_lock<mutex> lockCon(mMutexConnections);这句话就是加锁,锁的有效性仅限于大括号{}之内,也就是说,程序运行出大括号之后就释放锁了.因此可以看到有一些代码中加上了看似莫名其妙的大括号.

    void KeyFrame::EraseConnection(KeyFrame *pKF) {
        // 第一部分加锁
        {
            unique_lock<mutex> lock(mMutexConnections);
            if (mConnectedKeyFrameWeights.count(pKF)) {
                mConnectedKeyFrameWeights.erase(pKF);
                bUpdate = true;
            }
        }// 程序运行到这里就释放锁,后面的操作不需要抢到锁就能执行
    	
        UpdateBestCovisibles();
    }
    

SLAM主类System

System类是ORB-SLAM2系统的主类,先分析其主要的成员函数和成员变量:

成员变量/函数访问控制意义
eSensor mSensorprivate传感器类型MONOCULAR,STEREO,RGBD
ORBVocabulary* mpVocabularyprivateORB字典,保存ORB描述子聚类结果
KeyFrameDatabase* mpKeyFrameDatabaseprivate关键帧数据库,保存ORB描述子倒排索引
Map* mpMapprivate地图
Tracking* mpTrackerprivate追踪器
LocalMapping* mpLocalMapper
std::thread* mptLocalMapping
private
private
局部建图器
局部建图线程
LoopClosing* mpLoopCloser
std::thread* mptLoopClosing
private
private
回环检测器
回环检测线程
Viewer* mpViewer
FrameDrawer* mpFrameDrawer
MapDrawer* mpMapDrawer
std::thread* mptViewer
private
private
private
private
查看器
帧绘制器
地图绘制器
查看器线程
System(const string &strVocFile, string &strSettingsFile, const eSensor sensor, const bool bUseViewer=true)public构造函数
cv::Mat TrackStereo(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timestamp)
cv::Mat TrackRGBD(const cv::Mat &im, const cv::Mat &depthmap, const double &timestamp)
cv::Mat TrackMonocular(const cv::Mat &im, const double &timestamp)
int mTrackingState
std::mutex mMutexState
public
public
public
private
private
跟踪双目相机,返回相机位姿
跟踪RGBD相机,返回相机位姿
跟踪单目相机,返回相机位姿
追踪状态
追踪状态锁
bool mbActivateLocalizationMode
bool mbDeactivateLocalizationMode
std::mutex mMutexMode
void ActivateLocalizationMode()
void DeactivateLocalizationMode()
private
private
private
public
public
开启/关闭纯定位模式
bool mbReset
std::mutex mMutexReset
void Reset()
private
private
public
系统复位
void Shutdown()public系统关闭
void SaveTrajectoryTUM(const string &filename)
void SaveKeyFrameTrajectoryTUM(const string &filename)
void SaveTrajectoryKITTI(const string &filename)
public
public
public
以TUM/KITTI格式保存相机运动轨迹和关键帧位姿

构造函数

System(const string &strVocFile, string &strSettingsFile, const eSensor sensor, const bool bUseViewer=true): 构造函数

System::System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor, const bool bUseViewer) : 
        mSensor(sensor), mpViewer(static_cast<Viewer *>(NULL)), mbReset(false), mbActivateLocalizationMode(false), mbDeactivateLocalizationMode(false) {
	
	// step1. 初始化各成员变量
	// step1.1. 读取配置文件信息
    cv::FileStorage fsSettings(strSettingsFile.c_str(), cv::FileStorage::READ);
	// step1.2. 创建ORB词袋
    mpVocabulary = new ORBVocabulary();
    // step1.3. 创建关键帧数据库,主要保存ORB描述子倒排索引(即根据描述子查找拥有该描述子的关键帧)
	mpKeyFrameDatabase = new KeyFrameDatabase(*mpVocabulary);
	// step1.4. 创建地图
    mpMap = new Map();

	// step2. 创建3大线程: Tracking、LocalMapping和LoopClosing
    // step2.1. 主线程就是Tracking线程,只需创建Tracking对象即可
	mpTracker = new Tracking(this, mpVocabulary, mpFrameDrawer, mpMapDrawer, mpMap, mpKeyFrameDatabase, strSettingsFile, mSensor);
	// step2.2. 创建LocalMapping线程及mpLocalMapper
    mpLocalMapper = new LocalMapping(mpMap, mSensor==MONOCULAR);
    mptLocalMapping = new thread(&ORB_SLAM2::LocalMapping::Run, mpLocalMapper);
	// step2.3. 创建LoopClosing线程及mpLoopCloser
    mpLoopCloser = new LoopClosing(mpMap, mpKeyFrameDatabase, mpVocabulary, mSensor!=MONOCULAR);
    mptLoopClosing = new thread(&ORB_SLAM2::LoopClosing::Run, mpLoopCloser);
            
	// step3. 设置线程间通信
	mpTracker->SetLocalMapper(mpLocalMapper);
    mpTracker->SetLoopClosing(mpLoopCloser);
    mpLocalMapper->SetTracker(mpTracker);
    mpLocalMapper->SetLoopCloser(mpLoopCloser);
    mpLoopCloser->SetTracker(mpTracker);
    mpLoopCloser->SetLocalMapper(mpLocalMapper);
}

LocalMappingLoopClosing线程在System类中有对应的std::thread线程成员变量,为什么Tracking线程没有对应的std::thread成员变量?

因为Tracking线程就是主线程,而LocalMappingLoopClosing线程是其子线程,主线程通过持有两个子线程的指针(mptLocalMappingmptLoopClosing)控制子线程.

(ps: 虽然在编程实现上三大主要线程构成父子关系,但逻辑上我们认为这三者是并发的,不存在谁控制谁的问题).

跟踪函数

System对象所在的主线程就是跟踪线程,针对不同的传感器类型有3个用于跟踪的函数,其内部实现就是调用成员变量mpTrackerGrabImageMonocular(GrabImageStereoGrabImageRGBD)方法.

传感器类型用于跟踪的成员函数
MONOCULARcv::Mat TrackRGBD(const cv::Mat &im, const cv::Mat &depthmap, const double &timestamp)
STEREOcv::Mat TrackStereo(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timestamp)
RGBDcv::Mat TrackMonocular(const cv::Mat &im, const double &timestamp)
cv::Mat System::TrackMonocular(const cv::Mat &im, const double &timestamp) {
    cv::Mat Tcw = mpTracker->GrabImageMonocular(im, timestamp);
    unique_lock<mutex> lock(mMutexState);
    mTrackingState = mpTracker->mState;
    mTrackedMapPoints = mpTracker->mCurrentFrame.mvpMapPoints;
    mTrackedKeyPointsUn = mpTracker->mCurrentFrame.mvKeysUn;
    return Tcw;
}

pdf版本笔记的下载地址: ORB-SLAM2代码详解01_ORB-SLAM2代码运行流程,排版更美观一点,这个网站的默认排版太丑了(访问密码:3834)

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值