海森矩阵 Hessian matrix

本文探讨了多元函数求极值时利用赫氏矩阵的方法,详细解释了矩阵正定与负定的判断条件及其在求解极值问题中的作用。在经济学背景下,通过实例说明如何使用赫氏矩阵判定局部极小与极大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二阶偏导数矩阵也就所谓的赫氏矩阵(Hessian matrix). 
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵. 
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。 
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用hessian矩阵, 
在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点. 
在x0点上,hessian矩阵是正定的,且各分量的一阶偏导数为0,则x0为极小值点. 
矩阵是负定的充要条件是各个特征值均为负数. 
矩阵是正定的充要条件是各个特征值均为正数.

 

Hessian_matrix_1

 

http://zh.wikipedia.org/zh-cn/%E9%BB%91%E5%A1%9E%E7%9F%A9%E9%98%B5

http://sunyaxin2005.blog.163.com/blog/static/46252046201001344241985/


zz from http://www.cnblogs.com/emanlee/archive/2011/08/03/2126260.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值