Machine Learning
文章平均质量分 78
iFun0
一个正在疯狂学习的机器!
展开
-
机器学习中常用的矩阵求导公式
机器学习矩阵求导总结原创 2016-04-06 14:38:36 · 2347 阅读 · 0 评论 -
机器学习之概率论与数理统计基础知识-(2)随机变量和数字特征
机器学习之概率论与数理统计基础知识-(2)随机变量和数字特征原创 2016-06-18 13:19:13 · 9162 阅读 · 3 评论 -
机器学习中特征选择概述
机器学习中特征选择概述原创 2016-07-18 11:22:30 · 6425 阅读 · 0 评论 -
机器学习中特征选择和特征提取区别
特征选择和特征提取区别原创 2016-07-18 12:02:16 · 12312 阅读 · 0 评论 -
特征选择常用算法综述
原文链接:http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html转载 2017-02-28 04:16:53 · 743 阅读 · 0 评论 -
数据规范中的归一化(Normalization)与标准化(Standardization)
归一化 vs. 标准化原创 2017-02-24 08:18:18 · 15551 阅读 · 0 评论 -
KNN最近邻算法(K-NearestNeighbor)
KNN最邻近算法原创 2017-01-26 04:03:51 · 1680 阅读 · 0 评论 -
【Stanford机器学习笔记】10-Support Vector Machines
【Stanford机器学习笔记】10-Support Vector Machines原创 2016-05-09 22:32:54 · 1021 阅读 · 0 评论 -
【Stanford-ML-Discussion】二值分类器的多值分类问题理解
二值分类器(Logistics,NN,SVM)的多值分类问题理解原创 2017-03-04 09:00:19 · 2194 阅读 · 0 评论 -
【Stanford-ML-Discussion】非线性分类问题理解
【Stanford-ML-Discussion】非线性分类问题原创 2017-03-04 22:43:38 · 877 阅读 · 0 评论 -
Ensemble learning algorithms(Bagging, Boosting, Random Foreast)
集成学习算法Ensemble learning algorithms(Bagging, Boosting, Random Foreast)原创 2017-03-03 08:11:11 · 1235 阅读 · 0 评论 -
Cross-Entropy Loss 与Accuracy的数值关系
Cross-Entropy Loss 与Accuracy的数值关系原创 2017-03-15 02:44:30 · 3272 阅读 · 0 评论 -
【Stanford-ML-Discussion】LiR,LoR,NN,SVM假设,损失函数与训练方法比较
【Stanford-ML-Discussion】LiR,LoR,NN,SVM假设函数,损失函数与训练方法比较原创 2017-03-08 01:48:23 · 833 阅读 · 0 评论 -
机器学习之概率论与数理统计基础知识-(1)马尔可夫和贝叶斯
概率论与数理统计基础知识-(1)马尔可夫和贝叶斯原创 2016-06-15 22:00:34 · 6128 阅读 · 3 评论 -
【Stanford机器学习笔记】9-Machine Learning System Design
【Stanford机器学习笔记】9-Machine Learning System Design原创 2016-05-08 22:35:00 · 1864 阅读 · 0 评论 -
数据挖掘和机器学习的区别和联系
数据挖掘和机器学习的区别和联系,周志华有一篇很好的论述《机器学习与数据挖掘》可以帮助大家理解。原创 2016-04-27 11:33:26 · 1942 阅读 · 0 评论 -
【Stanford机器学习笔记】1-Linear Regression with One Variable
【Stanford机器学习笔记】1-Linear Regression with One Variable原创 2016-04-28 21:07:15 · 2036 阅读 · 0 评论 -
【Stanford机器学习笔记】2-Linear Regression with Multiple Variables
【Stanford机器学习笔记】2-Linear Regression with Multiple Variables原创 2016-04-29 17:43:58 · 3029 阅读 · 0 评论 -
【Stanford机器学习笔记】0-前言
Stanford机器学习笔记前言原创 2016-04-24 17:42:12 · 1250 阅读 · 0 评论 -
【Stanford机器学习笔记】3-Logistic Regression for Classification
【Stanford机器学习笔记】3-Logistic Regression for Classification原创 2016-04-29 21:21:48 · 1551 阅读 · 0 评论 -
【Stanford机器学习笔记】4-Regularization for Solving the Problem of Overfitting
【Stanford机器学习笔记】4-Regularization for Solving the Problem of Overfitting原创 2016-04-30 16:41:02 · 2673 阅读 · 0 评论 -
【Stanford机器学习笔记】5-Review for Chapter 1-4
【Stanford机器学习笔记】5-Review for Chapter 1-4原创 2016-04-30 19:06:39 · 856 阅读 · 0 评论 -
【Stanford机器学习笔记】6-Neural Networks: Representation
【Stanford机器学习笔记】6-Neural Networks: Representation原创 2016-05-01 17:20:42 · 1054 阅读 · 0 评论 -
【Stanford机器学习笔记】7-Neural Networks: Learning
【Stanford机器学习笔记】7-Neural Networks: Learning原创 2016-05-01 19:18:53 · 817 阅读 · 0 评论 -
【Stanford机器学习笔记】11-Unsupervised Learning
【Stanford机器学习笔记】11-Unsupervised Learning原创 2016-05-14 21:05:29 · 884 阅读 · 0 评论 -
【Stanford机器学习笔记】12-Dimensionality Reduction
【Stanford机器学习笔记】12-Dimensionality Reduction原创 2016-05-15 11:05:27 · 2430 阅读 · 0 评论 -
【Stanford机器学习笔记】8-Advice for Applying Machine Learning
【Stanford机器学习笔记】8-Advice for Applying Machine Learning原创 2016-05-08 19:55:07 · 1145 阅读 · 0 评论 -
机器学习中Precision,Recall的理解
机器学习中Precision,Recall的理解原创 2017-12-17 20:20:09 · 4300 阅读 · 0 评论