Areca Backup槟榔备份记录整理

首先下载这个备份软件https://sourceforge.net/projects/areca/ 

这个安装还是比较简单的,就不细说了。

1.打开使用的时候,如果习惯为中文,可以在workspace里修改参数设置,改为中文。再重新开启一次工具就能变为中文界面了。


2.选择编辑-新目标任务出现下面的窗口-选择备份地址

目标名称可以随便取,选择本地存储位置(如果有远程备份需要可以选择FTP或SFTP存储)

存储模式之(1)标准:这是默认模式,建议大多数用户使用这个。选择这个模式,会为每个备份创建一个新的文档

                 (2)Delta:同样会为每个备份创建一个新文档。值得注意的是,它会将自上次备份后修改的部分存储在文档中,所以但当你准备备份一个特别大的文件的时候,建议使用这个模式。

                  (3)镜像:这个模式会为备份创建和更新唯一的文档


3.源,选择要备份的源文件


4.其余的压缩,高级的……因为我不常使用,所以在这里也就不多说了。

5.选择保存后,窗口中的即为要备份文件的信息,以及一些备份文件信息

 需要强调的是,为了备份不出现以外,建议先模拟备份不要直接就备份。另外还有可能出现模拟备份完成,备份为红色发生错误的情况,这个时候可以通过查看日志了解具体错误发生在哪儿。


6.模拟备份后,第一次备份建议是完全备份

一般也把完全备份称为初始化备份;

而增量备份与之不同的是,增量备份备份的是在上一次备份之后发生过变化的文件(这个变化是和上一次备份比较)

差异备份:每次文件的变化都是和初始化状态(也就是完全备份时状态)的比较


8.选择开始备份,之后就能看到备份成功了


9.同样也能在你的存储位置找到这个备份好的文件了



### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值