算法导论 3.1-2

问题

证明对任意实常数a和b,其中b>0,有

分析

证明:因为n+a <= n+|a|
所以当|a| <= n时,n+a <= 2n
因为n+a >= n-|a|
所以当|a| <= n/2时, n-|a| >= n/2
所以n+a >= n/2
综上可得当n >= 2|a|时,0 < n/2 <= n+a <= 2n
又因为b>0
所以当底数x为正实数时,为单调增函数
所以成立
得证
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值