问题
证明对任意实常数a和b,其中b>0,有分析
证明: | 因为n+a <= n+|a| 所以当|a| <= n时,n+a <= 2n 因为n+a >= n-|a| 所以当|a| <= n/2时, n-|a| >= n/2 所以n+a >= n/2 综上可得当n >= 2|a|时,0 < n/2 <= n+a <= 2n 又因为b>0 所以当底数x为正实数时,为单调增函数 所以成立 得证 |
---|
证明: | 因为n+a <= n+|a| 所以当|a| <= n时,n+a <= 2n 因为n+a >= n-|a| 所以当|a| <= n/2时, n-|a| >= n/2 所以n+a >= n/2 综上可得当n >= 2|a|时,0 < n/2 <= n+a <= 2n 又因为b>0 所以当底数x为正实数时,为单调增函数 所以成立 得证 |
---|