第四讲 矩阵的秩
知识点
R(AB)≤ min(R(A),R(B))
两矩阵相乘,故可想到用矩阵分块,线性表出来证明:

R(A + B)
矩阵合并,故可以想到极大线性无关组来证明:

AB = O,R(A)+ R(B) ≤ n
注意n为A的列数(或 B的行数)
证明:AB = O,说明B也在AX = O的解线性空间内(n - rA)的。
分块矩阵(拓)

R(AT A)(证)

R(A*)(背)

证明:

例:

拓展

小结论

重点题型
1

基础题,要理清逻辑关系(重点在【注】)

2

B为什么不选?
解:AB只是B这种初等列变换加在A身上。(A的极大无关组仍是AB的极大无关组)

3

