①证明r(ATA) = r(A)
思路:通过证明AX = 0与ATAX = 0同解进而解决r(ATA) = r(A)
∵AX = 0 => ATAX = 0
反之:
∵ATAX = 0 =>XTATAX = 0
∴(AX)TAX = 0
两边同时取行列式有|(AX)TAX| = 0 => |(AX)T||AX| = 0
又∵|(AX)T| = |AX|
∴|AX|2 = 0 => AX = 0
∴AX = 0与ATAX = 0同解
∴他们基础解系所含向量个数相同
即n-r(A) = n-r(ATA) => r(A) = r(ATA)
②有两个mxn的矩阵A、B,证明r(A + B) ≤ r(A) + r(B)
设A的列向量αi1、αi2 …… αin的一个极大线性无关组为αi1、αi2 …… αir(r < n)
设B的列向量βi1、βi2 …… βin的一个极大线性无关组为βi1、βi2 …… βit(t < n)
那么αi1、αi2 …… αin中任何一个向量均可由αi1、αi2 …… αir(r < n)线性表示
βi1、βi2 …… βin中任何一个向量均可由βi1、βi2 …… βit(t < n) 线性表示
于是A + B中的每一个列向量αi1 + βi1、αi2 + βi2 …… αin + βin均可由αi1、αi2 …… αir、i1、βi2 …… βit线性表示
因此,A+B列向量组中极大线性无关组的向量个数不大于αi1、αi2 …… αir、i1、βi2 …… βit中的向量个数
即r(A+B) ≤ r+t = r(A)+r(B)
当且仅当αi1、αi2 …… αir、i1、βi2 …… βit线性无关时等号成立
③A是mxn矩阵,B是nxs矩阵,证明r(AB) ≤ min(r(A), r(B))
对于齐次方程组(1)ABX = 0和(2)BX = 0
若α是方程组(2)的任意一个解,则由(AB)α = A(Bα) = A0 = 0知α是方程组(1)的解
∴方程组(2)的解集是方程组(1)的解集的子集
又∵(1)的解向量的秩为s - r(AB),(2)的解向量的秩为s - r(B)
∴s - r(AB) ≤ s - r(B), 即r(AB) ≤ r(B)
由上述结论可得r(AB) = r((AB)T) = r(BTAT) ≤ r(AT) = r(A)
综上所述可得出结论r(AB) ≤ min(r(A), r(B))
矩阵秩的部分关系
最新推荐文章于 2024-11-01 10:08:14 发布