矩阵秩的部分关系

①证明r(ATA) = r(A)
思路:通过证明AX = 0与ATAX = 0同解进而解决r(ATA) = r(A)
∵AX = 0 => ATAX = 0
反之:
∵ATAX = 0 =>XTATAX = 0
∴(AX)TAX = 0
两边同时取行列式有|(AX)TAX| = 0 => |(AX)T||AX| = 0
又∵|(AX)T| = |AX|
∴|AX|2 = 0 => AX = 0
∴AX = 0与ATAX = 0同解
∴他们基础解系所含向量个数相同
即n-r(A) = n-r(ATA) => r(A) = r(ATA)

②有两个mxn的矩阵A、B,证明r(A + B) ≤ r(A) + r(B)
设A的列向量αi1、αi2 …… αin的一个极大线性无关组为αi1、αi2 …… αir(r < n)
设B的列向量βi1、βi2 …… βin的一个极大线性无关组为βi1、βi2 …… βit(t < n)
那么αi1、αi2 …… αin中任何一个向量均可由αi1、αi2 …… αir(r < n)线性表示
βi1、βi2 …… βin中任何一个向量均可由βi1、βi2 …… βit(t < n) 线性表示
于是A + B中的每一个列向量αi1 + βi1、αi2 + βi2 …… αin + βin均可由αi1、αi2 …… αiri1、βi2 …… βit线性表示
因此,A+B列向量组中极大线性无关组的向量个数不大于αi1、αi2 …… αiri1、βi2 …… βit中的向量个数
即r(A+B) ≤ r+t = r(A)+r(B)
当且仅当αi1、αi2 …… αiri1、βi2 …… βit线性无关时等号成立

③A是mxn矩阵,B是nxs矩阵,证明r(AB) ≤ min(r(A), r(B))
对于齐次方程组(1)ABX = 0和(2)BX = 0
若α是方程组(2)的任意一个解,则由(AB)α = A(Bα) = A0 = 0知α是方程组(1)的解
∴方程组(2)的解集是方程组(1)的解集的子集
又∵(1)的解向量的秩为s - r(AB),(2)的解向量的秩为s - r(B)
∴s - r(AB) ≤ s - r(B), 即r(AB) ≤ r(B)
由上述结论可得r(AB) = r((AB)T) = r(BTAT) ≤ r(AT) = r(A)
综上所述可得出结论r(AB) ≤ min(r(A), r(B))

### 计算矩阵 在处理线性代数问题时,计算矩阵是一个重要环节。为了理解如何通过行列式化简来计算矩阵,先要明白几个核心概念。 #### 行列式的定义及其性质 行列式是一种特殊的数值函数,对于方阵而言尤为重要。当考虑非奇异矩阵(即满矩阵),其行列式不等于零;而对于奇异矩阵,则行列式为零[^1]。这一特性可用于判断矩阵是否具有最大可能的。 #### 初等行变换与阶梯形矩阵 为了简化计算过程并找到矩阵的最大线性独立向量数目,可以应用初等行操作将原始矩阵转换成上三角形式或其他更易于分析的形式。这些变换不会改变矩阵,并且能够帮助识别哪些行或列为有效贡献者[^2]。 #### 使用行列式评估子空间维数 具体到计算某个特定大小子集内所有元素构成的新矩阵对应的行列式值。如果某一行/列可以通过其他几行/列表示出来,则说明存在依赖关系,此时该位置上的行列式应为0。反之则表明这部分数据提供了额外的信息增量,有助于增加整体的空间维度[^3]。 #### 实际案例展示 假设有一个具体的例子用于解释上述理论: 设有一4×4阶矩阵A如下所示: \[ A=\begin{pmatrix} a_{11} & a_{12}& a_{13}& a_{14}\\ a_{21} & a_{22}& a_{23}& a_{24}\\ a_{31} & a_{32}& a_{33}& a_{34}\\ a_{41} & a_{42}& a_{43}& a_{44}\end{pmatrix} \] 现在想要知道这个矩阵的具体是多少。为此,可以从最简单的部分开始尝试提取较小规模的子矩阵来进行检验。比如取前两行和前三列形成新的\(B_1\)矩阵: \[ B_1= \begin{pmatrix} a_{11} & a_{12}& a_{13}\\ a_{21} & a_{22}& a_{23}\end{pmatrix},\quad |det(B_1)|≠0 \] 继续扩大范围直到无法再获得非零行列式为止。最终发现最大的满足条件的是由全部四行组成的三个不同列组合而成的一个3*3的小矩阵C, 它拥有非零行列式 \(|det(C)| ≠ 0\), 这意味着原矩阵A至少有rank(A)=3. ```python import numpy as np def calculate_rank(matrix): """Calculate the rank of given matrix using determinant.""" n_rows, n_cols = matrix.shape min_dim = min(n_rows,n_cols) for r in range(min_dim,-1,-1): sub_matrices_det = [] # Generate all possible combinations of rows and columns with size 'r' row_combinations = list(itertools.combinations(range(n_rows), r)) col_combinations = list(itertools.combinations(range(n_cols), r)) for rc in row_combinations: for cc in col_combinations: temp_matrix = matrix[np.ix_(list(rc), list(cc))] det_value = abs(np.linalg.det(temp_matrix)) > 1e-8 if det_value != 0 : return r return 0 # Example usage matrix_example = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) print(f"The calculated rank is {calculate_rank(matrix_example)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值