PPT:智慧物流装备概论

导语

大家好,我是智能仓储物流技术研习社的社长,你的老朋友,老K。

知识星球 * 原创电子书 * 深海社区 * 微信群 

更多学习资料,请球友到知识星球 【智能仓储物流技术研习社】自行下载。

c57493303209446050a38a6f24d03039.png

972ca35ef44eca3d9b3b02b1f27bb544.png

fb1a98c7b7e14a862007d616893f0da2.gif

2cfd02438dd9d364c17d78733ea57f2e.png

01dc0fafee2a48254bcc4614a8a943e1.png

5e44f9ea82080dc5fb551bbe3fc64f72.png

a64323ff3a0fb2a332ef96d578c129fd.png

f90708da92cefe068a3aad1c7b74dbb6.png

f5c69322ae88ed4862fb7a8fba353c52.png

c6bb8861c23292fe3b17c2f7241ba7e0.png

caf3e70fdab052725d7d0c13cfc13349.png

fd4a581a2b285815f3ed366b4d39fd83.png

8dac0bc7c86fa046056c0e64baffbfda.png

ffb52c7d8475bc55e4e384026ebefea9.png

892cfaf83df697a1fd8d9efe5c8d883f.png

4f7a316502f1054f7239555b6513cf1f.png

c1f4927da6215644ba6af22c7c5b2dc6.png

c04e4a584953e441025c2b3095ad72b0.png

17deb5fb97ca6f599fda32340790d807.png

3cbc687fce4959fbe48e76fe482dff2d.png

937419aa01ba46692a1582a8fa5a0417.png

6b4b0cae223a99d6d5686585dec4ef21.png

e33aaa3e9aa820b1df92cbe54fe18a5d.png

62e3e917e39f11db54dce0040c6fe3ad.png

69c84de205b73d430fe56c31039d57d9.png

09b3af07888a0161c6553c85dd82c22c.png

7a12cb87499994847491b1382e0c6f05.png

18abbe0f2bb2699cf327e9407e206425.png

4658fce3ebac420701040b21abbb5f0c.png

8a0646695b7f7a90bbdfd4848c824cb1.png

6c996437b9c6dd23bd53c28162009a78.png

643f604051f00f222ab376afc01d71b0.png

6664aab7dfba5898fda61388a02f1b1a.png

72f92dd800e02dd4746c33f3955c5452.png

446f01a676af3ef6a5b975384945e860.png

bee4ba01976db23b441b7e1f64d230b2.png

ac6b741085cc80596a1d3eb35379da2b.png

f91a6c40b8bb1b3d35c776e577e03905.png

3ffb2afbda413ece0639938f3f535823.png

f8d2c29dd56fd2380bd36933e18ab8d3.png

7fbb76b59618004705f3fb7ded70ef9a.png

fd1cddc87599ecd8ec6e3a44a446261b.png

6c9787a35bf6dfb63e98813d3c7415e7.png

3817aaf58dbe90b7c1ffbe87195e6d09.png

b4ff7128392749906434aee6ab658bbb.png

ebca5602c6709a7b1f17f30dfa6981f5.png

ac180142ed0c0ebb5d59f364c3a9ea99.png

a4786f6c250c3fb98cc4618cb374aada.png

cfe2f4fcb2e8312945edf3ecf12b24f0.png

65dd3aadb5bed86a14106203f5f8299b.png

7c14c4e256355a2b51e18f159b188122.png

8c4b4f85b35575ba052dd7f0c37cee9d.png

25daec3830e0c0d4b677063bf28f5559.png

42c7022f854ede8efd47b912590d2d0b.png

知名企业

82deda6f21b92c826bd167e2a56e2068.png


 4559a9e53d6051cd3123080778e83caa.png


a00b34d3c57c1e6d102808a6773a26bd.png

物流技术选型神器

46ffc1cc55e5e22a8918c5c4d3357202.png

2c3302e28cda5352c4c3244d32e6cdf8.png

dfb5e1a614c276a99e5c1ff1ec0dca36.png

福利

 定位:这是本社精心创建的知识社群,方向主要包含智能仓储物流自动化规划设计,自动化立体库、智能机器人,自动化拣选系统,仓储管理软件WMS,AGV应用等,希望将该知识星球打造为一个大家频繁沟通、咨询与探讨行业问题的平台!

 同时,会免费给大家提供一些解决方案、行业报告、PPT、电子书、手册、技术资料等干货(目前30G+,并实时更新),供大家交流、学习与参考。

欢迎加入知识社群扫下方二维码~~~5ceb39d5c21baceea0549b47f23929ef.png

-智能仓储物流技术研习社-

建立智能物流系统甲方、集成商与周边配套商

共同技术语言,填埋沟通鸿沟
提供高校物流专业教学现实素材

搭建可实际应用、接地气的

智能物流技术交流分享平台

70ed19c8548aeb6c894940edaefe8790.gif

立体库 | AGV | 机器人 | 拣选 | 分拣 | 仿真 

| WMS | WCS | 输送 | 包装

|规划| |报告| |趋势| |历史| 

制造业| 电商 | 快递 | 鞋服 | 家具 | 商超 

| 零售 | 医药 | 冷链 | 第三方

往期推荐

90%的智能仓储物流产品手册准备发射

大型堆垛机转弯换轨技术

智能物流硬核知识分享(知识星球)

PPT:WMS分析设计案例

158页WMS全项功能介绍

物料分拣新方式---投影分拣

智能仓储物流技术知识点汇总(部分)

穿梭式仓库与传统堆垛机仓库的定量对比分析

WMS面面观

PPT:基于5G的智慧仓储解决方案

PPT:WMS现状与系统规划

示例-智能制造厂内物流解决方案

45页PPT:AGV技术详解

硬核!智能拣选工作台中的人机协作研究

近期热门视频

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值