拉普拉斯逆变换
拉普拉斯逆变换在整个学习过程中一般出现在大题中,这也是信号与系统中比较重要的知识点,下来我们学习一下相关内容。
在这里主要探讨的是部分分式展开法。
F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , m < n 且 为 真 分 式 F(s)=\frac{B(s)}{A(s)}=\frac{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots +b_{1}s+b_{0}}{s^{n}+a_{n-1}s^{n-1}+\dots +a_{1}s+a_{0}} , m<n且为真分式 F(s)=A(s)B(s)=sn+an−1sn−1+⋯+a1s+a0bmsm+bm−1sm−1+⋯+b1s+b0,m<n且为真分式
方程A(s)=0称为特征方程,它的根为特征根,也称为F(s)的固有频率。
n个特征根 p i p_{i} pi称为F(s)的极点。
我们根据特征根可以分为三种情况。
(1)F(s)有单极点(特征根为单根)
F ( s ) = B ( s ) A ( s ) = K 1 s − p 1 + K 2 s − p 2 + ⋯ + K i s − p i + ⋯ + K n s − p n F(s)= \frac{B(s)}{A(s)} =\frac{K_{1}}{s-p_{1}} +\frac{K_{2}}{s-p_{2}}+\dots +\frac{K_{i}}{s-p_{i}}+\dots +\frac{K_{n}}{s-p_{n}} F(s)=A(s)B(s)=s−p1K1+s−p2K2+⋯+s−piKi+⋯+s−pnKn
又因为
e p i t ε ( t ) ↔ 1 s − p i e^{p_{i}t}\varepsilon (t)\leftrightarrow\frac{1}{s-p_{i}} epitε(t)↔s−pi1
f ( t ) = ∑ i = 1 n K i e p i t ε ( t ) \colorbox{yellow}{$f(t)=\sum_{i=1}^{n} K_{i}e^{p_{i}t}\varepsilon (t)$} f(t)=∑i=1nKiepitε(t)
K i = ( s − p i ) F ( s ) ∣ s = p i K_{i}=(s-p_{i})F(s)\mid _{s=p_{i}} Ki=(s−pi)F(s)∣s=pi
我们来举个例子,已知 F ( s ) = 10 ( s + 2 ) ( s + 5 ) s ( s + 1 ) ( s + 3 ) \large F(s)= \large \frac{10(s+2)(s+5)}{s(s+1)(s+3)} F(s)=s(s+1)(s+3)10(s+2)(s+5),求f(t)。
F ( s ) = K 1 s + K 2 s + 1 + K 2 s + 3 F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{s+1}+\frac{K_{2}}{s+3} F(s)=sK1+s+1K2+s+3K2
K 1 = s F ( s ) ∣ s = 0 = 100 3 \large K_{1}=sF(s)\mid _{s=0}=\frac{100}{3} K1=sF(s)∣s=0=3100
K 2 = ( s + 1 ) F ( s ) ∣ s = − 1 = − 20 \large K_{2}=(s+1)F(s)\mid _{s=-1}=-20 K2=(s+1)F(s)∣s=−1=−20
K 3 = ( s + 3 ) F ( s ) ∣ s = − 3 = − 10 3 \large K_{3}=(s+3)F(s)\mid _{s=-3}=-\frac{10}{3} K3=(s+3)F(s)∣s=−3=−310
所以F(s)= 100 3 s − 20 s + 1 − 10 3 ( s + 3 ) \Large \frac{100}{3s}-\frac{20}{s+1}-\frac{10}{3(s+3)} 3s100−s+120