拉普拉斯逆变换

拉普拉斯逆变换

拉普拉斯逆变换在整个学习过程中一般出现在大题中,这也是信号与系统中比较重要的知识点,下来我们学习一下相关内容。

在这里主要探讨的是部分分式展开法。
F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , m < n 且 为 真 分 式 F(s)=\frac{B(s)}{A(s)}=\frac{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots +b_{1}s+b_{0}}{s^{n}+a_{n-1}s^{n-1}+\dots +a_{1}s+a_{0}} , m<n且为真分式 F(s)=A(s)B(s)=sn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0,m<n

方程A(s)=0称为特征方程,它的根为特征根,也称为F(s)的固有频率。
n个特征根 p i p_{i} pi称为F(s)的极点。

我们根据特征根可以分为三种情况。

(1)F(s)有单极点(特征根为单根)

F ( s ) = B ( s ) A ( s ) = K 1 s − p 1 + K 2 s − p 2 + ⋯ + K i s − p i + ⋯ + K n s − p n F(s)= \frac{B(s)}{A(s)} =\frac{K_{1}}{s-p_{1}} +\frac{K_{2}}{s-p_{2}}+\dots +\frac{K_{i}}{s-p_{i}}+\dots +\frac{K_{n}}{s-p_{n}} F(s)=A(s)B(s)=sp1K1+sp2K2++spiKi++spnKn
又因为
e p i t ε ( t ) ↔ 1 s − p i e^{p_{i}t}\varepsilon (t)\leftrightarrow\frac{1}{s-p_{i}} epitε(t)spi1

f ( t ) = ∑ i = 1 n K i e p i t ε ( t ) \colorbox{yellow}{$f(t)=\sum_{i=1}^{n} K_{i}e^{p_{i}t}\varepsilon (t)$} f(t)=i=1nKiepitε(t)

K i = ( s − p i ) F ( s ) ∣ s = p i K_{i}=(s-p_{i})F(s)\mid _{s=p_{i}} Ki=(spi)F(s)s=pi
我们来举个例子,已知 F ( s ) = 10 ( s + 2 ) ( s + 5 ) s ( s + 1 ) ( s + 3 ) \large F(s)= \large \frac{10(s+2)(s+5)}{s(s+1)(s+3)} F(s)=s(s+1)(s+3)10(s+2)(s+5),求f(t)。

F ( s ) = K 1 s + K 2 s + 1 + K 2 s + 3 F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{s+1}+\frac{K_{2}}{s+3} F(s)=sK1+s+1K2+s+3K2
K 1 = s F ( s ) ∣ s = 0 = 100 3 \large K_{1}=sF(s)\mid _{s=0}=\frac{100}{3} K1=sF(s)s=0=3100
K 2 = ( s + 1 ) F ( s ) ∣ s = − 1 = − 20 \large K_{2}=(s+1)F(s)\mid _{s=-1}=-20 K2=(s+1)F(s)s=1=20
K 3 = ( s + 3 ) F ( s ) ∣ s = − 3 = − 10 3 \large K_{3}=(s+3)F(s)\mid _{s=-3}=-\frac{10}{3} K3=(s+3)F(s)s=3=310
所以F(s)= 100 3 s − 20 s + 1 − 10 3 ( s + 3 ) \Large \frac{100}{3s}-\frac{20}{s+1}-\frac{10}{3(s+3)} 3s100s+1203(s+3)10

由此可得f(t)= ( 100 3 − 20 e − t − 10 3 e − 3 t ) ε ( t ) \Large(\frac{100}{3}-20e^{-t}-\frac{10}{3}e^{-3t})\varepsilon (t) (310020et310e3t)ε(t)

(2)F(s)有共轭单极点(共轭单根)

A(s)=0有复数根, p 1 , 2 = − α ± j β p_{1,2}=-\alpha \pm j\beta p1,2=α±jβ

复数根的求解:
△ = ( 4 a c − 2 b ) i 2 \bigtriangleup =(4ac-2b)i^{2} =(4ac2b)i2
x = − b ± i 4 a c − 2 b 2 a x=\frac{-b\pm i\sqrt{4ac-2b} }{2a} x=2ab±i4ac2b

F ( s ) = K 1 s + α − j β + K 2 s + α + j β F(s)=\frac{K_{1}}{s+\alpha -j\beta }+\frac{K_{2}}{s+\alpha +j\beta } F(s)=s+αjβK1+s+α+jβK2
K 1 = [ ( s + α − j β ) F ( s ) ] ∣ s = − α + j β = ∣ K 1 ∣ e j θ = C + j D K_{1}=[(s+\alpha -j\beta)F(s)]\mid _{s=-\alpha+j\beta}=\left | K_{1} \right | e^{j\theta }=C+jD K1=[(s+αjβ)F(s)]s=α+jβ=K1ejθ=C+jD
K 2 = C − j D K_{2}=C-jD K2=CjD
f ( t ) = 2 e − α t [ C cos ⁡ ( β t ) − D sin ⁡ ( β t ) ] ε ( t ) \colorbox{yellow} {$f(t)=2e^{-\alpha t}[C\cos (\beta t)-D\sin (\beta t)]\varepsilon (t)$} f(t)=2eαt[Ccos(βt)Dsin(βt)]ε(t)
所 以 只 需 要 求 得 复 数 根 α 与 β , 再 求 K 1 得 到 C 与 D 可 以 求 出 f ( t ) . 所以只需要求得复数根\alpha与\beta,再求K_{1}得到C与D可以求出f(t). αβK1CDf(t).

(3)F(s)有重极点(重根)

若 A ( s ) = 0 在 s = p i 处 有 r 重 根 若A(s)=0在s=p_{i}处有r重根 A(s)=0s=pir
F ( s ) = K 11 ( s − p 1 ) r + K 12 ( s − p 1 ) r − 1 + ⋯ + K 1 r ( s − p 1 ) F(s)=\frac{K_{11}}{(s-p_{1})^{r}} +\frac{K_{12}}{(s-p_{1})^{r-1}}+\dots +\frac{K_{1r}}{(s-p_{1})} F(s)=(sp1)rK11+(sp1)r1K12++(sp1)K1r
K 11 = ( s − p 1 ) r F ( s ) ∣ s = p 1 K_{11}=(s-p_{1})^{r}F(s)\mid _{s=p_{1}} K11=(sp1)rF(s)s=p1
K 12 = d d s [ ( s − p 1 ) r F ( s ) ] ∣ s = p 1 K_{12}=\frac{\mathrm{d}}{\mathrm{d}s} [(s-p_{1})^{r}F(s)]\mid _{s=p_{1}} K12=dsd[(sp1)rF(s)]s=p1
K 13 = 1 ( i − 1 ) ! d i − 1 d s i − 1 [ ( s − p 1 ) r F ( s ) ] ∣ s = p 1 K_{13}=\frac{1}{(i-1)!} \frac{\mathrm{d^{i-1}}}{\mathrm{d}s^{i-1}} [(s-p_{1})^{r}F(s)]\mid _{s=p_{1}} K13=(i1)!1dsi1di1[(sp1)rF(s)]s=p1
举个例子,已知F(s)= s − 2 s ( s + 1 ) 3 \Large\frac{s-2}{s(s+1)^{3}} s(s+1)3s2,求f(t)。

F ( s ) = K 11 ( s + 1 ) 3 + K 12 ( s + 1 ) 2 + K 13 ( s + 1 ) + K 4 s \large F(s)=\frac{K_{11}}{(s+1)^{3}} +\frac{K_{12}}{(s+1)^{2}}+\frac{K_{13}}{(s+1)}+\frac{K_{4}}{s} F(s)=(s+1)3K11+(s+1)2K12+(s+1)K13+sK4
F a ( s ) = ( s + 1 ) 3 F ( s ) = s − 2 3 \large F_{a}(s)=(s+1)^{3}F(s)=\frac{s-2}{3} Fa(s)=(s+1)3F(s)=3s2
K 11 = F a ( s ) ∣ s = − 1 = 3 K_{11}=F_{a}(s)\mid _{s=-1}=3 K11=Fa(s)s=1=3
K 12 = d d s F a ( s ) ∣ s = − 1 = 2 K_{12}=\frac{\mathrm{d}}{\mathrm{d}s}F_{a}(s)\mid _{s=-1}=2 K12=dsdFa(s)s=1=2
K 13 = 1 2 d 2 d s 2 F a ( s ) ∣ s = − 1 = 2 K_{13}=\frac{1}{2}\frac{\mathrm{d^{2}}}{\mathrm{d}s^{2}}F_{a}(s)\mid _{s=-1}=2 K13=21ds2d2Fa(s)s=1=2
K 4 = s F ( S ) ∣ s = 0 = − 2 K_{4}=sF(S)\mid _{s=0}=-2 K4=sF(S)s=0=2
所 以 F ( s ) = 3 ( s + 1 ) 3 + 2 ( s + 1 ) 2 + 2 ( s + 1 ) − 2 s 所以\large F(s)=\frac{3}{(s+1)^{3}} +\frac{2}{(s+1)^{2}}+\frac{2}{(s+1)}-\frac{2}{s} F(s)=(s+1)33+(s+1)22+(s+1)2s2

已知 1 ( n − 1 ) ! t n − 1 e p 1 t ε ( t ) ↔ 1 ( s − p 1 ) n \Large\colorbox{yellow}{$\frac{1}{(n-1)!} t^{n-1}e^{p_{1}t}\varepsilon (t)\leftrightarrow\frac{1}{(s-p_{1})^{n}}$} (n1)!1tn1ep1tε(t)(sp1)n1
所以
f ( t ) = ( 3 2 t 2 e − t + 2 t e − t + 2 e − t − 2 ) ε ( t ) f(t)=(\frac{3}{2}t^{2}e^{-t}+2te^{-t}+2e^{-t}-2 )\varepsilon (t) f(t)=(23t2et+2tet+2et2)ε(t)
拉普拉斯逆变换一般用在大题中根据微分方程求解出y(t)以及系统函数h(t)。

s域系统分析

Y ( s ) = Y z i ( s ) + Y z s ( s ) = M ( s ) A ( s ) + B ( s ) A ( s ) F ( s ) Y(s)=Y_{zi}(s)+Y_{zs}(s)=\frac{M(s)}{A(s)}+ \frac{B(s)}{A(s)}F(s) Y(s)=Yzi(s)+Yzs(s)=A(s)M(s)+A(s)B(s)F(s)

(1)举个例子,已知

y ′ ′ ( t ) + 5 y ′ ( t ) + 6 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) y^{''}(t)+5y^{'}(t)+6y(t)=2f^{'}(t)+6f(t) y(t)+5y(t)+6y(t)=2f(t)+6f(t)
已知初始状态 y ( 0 − ) = 1 , y ′ ( 0 − ) = − 1 , y(0_{-})=1,y^{'}(0_{-})=-1, y(0)=1,y(0)=1,激励 f ( t ) = 5 cos ⁡ t ε ( t ) f(t)=5\cos t\varepsilon (t) f(t)=5costε(t).求y(t)。

因 为 f ( t ) = 5 cos ⁡ t ε ( t ) 是 因 果 信 号 , 所 以 t < 0 时 , f ( t ) = 0 因为f(t)=5\cos t\varepsilon (t)是因果信号,所以t<0时,f(t)=0 f(t)=5costε(t)t<0f(t)=0
根据时域微分特性: s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 5 [ s Y ( s ) − y ( 0 − ) ] + 6 Y ( s ) = 2 [ s F ( s ) − f ( 0 − ) ] + 6 F ( s ) s^{2}Y(s)-sy(0_{-})-y^{'}(0_{-})+5[sY(s)-y(0_{-})]+6Y(s)=2[sF(s)-f(0_{-})]+6F(s) s2Y(s)sy(0)y(0)+5[sY(s)y(0)]+6Y(s)=2[sF(s)f(0)]+6F(s)
Y ( s ) ( s 2 + 5 s + 6 ) = s y ( 0 − ) + y ′ ( 0 − ) + 5 y ( 0 − ) + ( 2 s + 6 ) F ( s ) Y(s)(s^{2}+5s+6)=sy(0_{-})+y^{'}(0_{-})+5y(0_{-})+(2s+6)F(s) Y(s)(s2+5s+6)=sy(0)+y(0)+5y(0)+(2s+6)F(s)
Y ( s ) = s y ( 0 − ) + y ′ ( 0 − ) + 5 y ( 0 − ) s 2 + 5 s + 6 + 2 ( s + 3 ) s 2 + 5 s + 6 F ( s ) Y(s)=\frac{sy(0_{-})+y^{'}(0_{-})+5y(0_{-})}{s^{2}+5s+6}+\frac{2(s+3)}{s^{2}+5s+6}F(s) Y(s)=s2+5s+6sy(0)+y(0)+5y(0)+s2+5s+62(s+3)F(s)
之后求出F(s)的拉普拉斯变换,再通过部分分式展开法表示出Y(s),进而可以求出y(t)。

(2)我们再以这个例题为准,假如初始值给的是 y ( 0 + ) = 1 , y ′ ( 0 + ) = 9 y(0_{+})=1,y^{'}(0_{+})=9 y(0+)=1,y(0+)=9

我 们 需 要 求 出 y ( 0 − ) 与 y ′ ( 0 − ) 我们需要求出y(0_{-})与y^{'}(0_{-}) y(0)y(0)
y ( 0 + ) = y z i ( 0 + ) + y z s ( 0 + ) \large y(0_{+})=y_{zi}(0_{+})+y_{zs}(0_{+}) y(0+)=yzi(0+)+yzs(0+)
因 为 y z s ( 0 − ) = 0 , 所 以 y ( 0 − ) = y z i ( 0 − ) , 而 y z i ( 0 − ) = y z i ( 0 + ) 因为y_{zs}(0_{-})=0,所以y(0_{-})=y_{zi}(0_{-}),而y_{zi}(0_{-})=y_{zi}(0_{+}) yzs(0)=0,y(0)=yzi(0),yzi(0)=yzi(0+)
所以 y ( 0 − ) = y z i ( 0 + ) = y ( 0 + ) − y z s ( 0 + ) y(0_{-})=y_{zi}(0_{+})=y(0_{+})-y_{zs}(0_{+}) y(0)=yzi(0+)=y(0+)yzs(0+)
y ( 0 − ) = y ( 0 + ) − y z s ( 0 + ) \large\colorbox{yellow} {$y(0_{-})=y(0_{+})-y_{zs}(0_{+})$} y(0)=y(0+)yzs(0+)

所以根据题目所给的信息,我们可以得到

y z s ( t ) = − 4 e − 2 t ε ( t ) + 2 [ 2 cos ⁡ ( t ) + sin ⁡ ( t ) ] ε ( t ) y_{zs}(t)=-4e^{-2t}\varepsilon (t)+2[2\cos(t)+\sin(t)]\varepsilon (t) yzs(t)=4e2tε(t)+2[2cos(t)+sin(t)]ε(t)
y z s ( 0 + ) = − 4 + 2 × 2 = 0 , y z s ′ ( 0 + ) = 6 y_{zs}(0_{+})=-4+2\times 2=0,y^{'}_{zs}(0_{+})=6 yzs(0+)=4+2×2=0,yzs(0+)=6
y ( 0 − ) = y z i ( 0 + ) = y ( 0 + ) − y z s ( 0 + ) = 1 − 0 = 1 y(0_{-})=y_{zi}(0_{+})=y(0_{+})-y_{zs}(0_{+})=1-0=1 y(0)=yzi(0+)=y(0+)yzs(0+)=10=1
y ′ ( 0 − ) = y z i ′ ( 0 + ) = y ′ ( 0 + ) − y z s ′ ( 0 + ) = 9 − 6 = 3 y^{'}(0_{-})=y^{'}_{zi}(0_{+})=y^{'}(0_{+})-y^{'}_{zs}(0_{+})=9-6=3 y(0)=yzi(0+)=y(0+)yzs(0+)=96=3

(3)系统函数H(s)

系统函数是指系统零状态响应的拉氏变换和激励的拉氏变换之比,它与激励,初始状态等都无关,只与系统的结构,元件参数等有关。
H ( s ) = Y z s ( s ) F ( s ) H(s)=\frac{Y_{zs}(s)}{F(s)} H(s)=F(s)Yzs(s)
举个例子,已知
f ( t ) = e − t ε ( t ) f(t)=e^{-t}\varepsilon (t) f(t)=etε(t)
y z s ( t ) = ( 3 e − t − 4 e − 2 t + e − 3 t ) ε ( t ) y_{zs}(t)=(3e^{-t}-4e^{-2t}+e^{-3t})\varepsilon (t) yzs(t)=(3et4e2t+e3t)ε(t)
求冲激响应与微分方程。

H ( s ) = Y z s ( s ) F ( s ) = 2 s + 8 s 2 + 5 s + 6 H(s)=\frac{Y_{zs}(s)}{F(s)}=\frac{2s+8}{s^{2}+5s+6} H(s)=F(s)Yzs(s)=s2+5s+62s+8
我 们 可 以 根 据 H ( s ) = Y z s ( s ) F ( s ) 求 解 微 分 方 程 。 我们可以根据H(s)=\frac{Y_{zs}(s)}{F(s)}求解微分方程。 H(s)=F(s)Yzs(s)
s 2 Y z s ( s ) + 5 s Y z s ( s ) + 6 Y z s ( s ) = 2 s F ( s ) + 8 F ( s ) \large s^{2}Y_{zs}(s)+5sY_{zs}(s)+6Y_{zs}(s)=2sF(s)+8F(s) s2Yzs(s)+5sYzs(s)+6Yzs(s)=2sF(s)+8F(s)
取 逆 变 换 可 得 : y z s ′ ′ ( t ) + 5 y z s ′ ( t ) + 6 y z s ( t ) = 2 f ′ ( t ) + 8 f ( t ) 取逆变换可得:y^{''}_{zs}(t)+5y^{'}_{zs}(t)+6y_{zs}(t)=2f^{'}(t)+8f(t) yzs(t)+5yzs(t)+6yzs(t)=2f(t)+8f(t)
所 以 其 微 分 方 程 为 : : y ′ ′ ( t ) + 5 y ′ ( t ) + 6 y ( t ) = 2 f ′ ( t ) + 8 f ( t ) 所以其微分方程为::y^{''}(t)+5y^{'}(t)+6y(t)=2f^{'}(t)+8f(t) y(t)+5y(t)+6y(t)=2f(t)+8f(t)

  • 5
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值