Z域变换的主要性质
复频域(z域)变换的性质大多与拉普拉斯变换的性质相似,其与k域有不可分割的关系。复频域(z域)变换的性质既适用于单边z变换,也适用双边z变换,其性质有九条。其中标出来的性质是比较重要的。
1.线性性质
若 f 1 ( k ) ↔ F 1 ( z ) , α 1 < ∣ z ∣ < β 1 f_{1}(k)\leftrightarrow F_{1}(z), \alpha _{1}<|z|<\beta _{1} f1(k)↔F1(z),α1<∣z∣<β1
f 2 ( k ) ↔ F 2 ( z ) , α 2 < ∣ z ∣ < β 2 f_{2}(k)\leftrightarrow F_{2}(z), \alpha _{2}<|z|<\beta _{2} f2(k)↔F2(z),α2<∣z∣<β2
则对于任意常数 a 1 , a 2 a_{1},a_{2} a1,a2
a 1 f 1 ( k ) + a 2 f 2 ( k ) ↔ a 1 F 1 ( z ) + a 2 F 2 ( z ) , m a x ( α 1 , α 2 ) < ∣ z ∣ < m a x ( β 1 , β 2 ) a_{1}f_{1}(k)+a_{2}f_{2}(k)\leftrightarrow a_{1}F_{1}(z)+a_{2}F_{2}(z),max(\alpha _{1},\alpha _{2})<|z|<max(\beta _{1},\beta _{2}) a1f1(k)+a2f2(k)↔a1F1(z)+a2F2(z),max(α1,α2)<∣z∣<max(β1,β2)
其收敛域至少是 F 1 ( z ) F_{1}(z) F1(z)与 F 2 ( z ) F_{2}(z) F2(z)收敛域的相交部分。
2.移位(移序)性质
对于这一性质,其单边z变换与双边z变换情况是不同的。
(1)双边z变换的移位
若 f ( k ) ↔ F ( z ) , α < ∣ z ∣ < β f(k)\leftrightarrow F(z),\alpha<|z|<\beta f(k)↔F(z),α<∣z∣<β,且对于整数m>0,则
f ( k ± m ) ↔ z ± m F ( z ) , α < ∣ z ∣ < β \colorbox{orange} {$f(k\pm m) \leftrightarrow z^{\pm m}F(z),\alpha<|z|<\beta$} f(k±m)↔z±mF(z),α<∣z∣<β
(2)单边z变换移位
若 f ( k ) ↔ F ( z ) , ∣ z ∣ > α ( α 为 正 实 数 ) f(k)\leftrightarrow F(z),|z|>\alpha (\alpha为正实数) f(k)↔F(z),∣z∣>α(α为正实数),且对于整数m>0,则
f ( k − m ) ↔ z − m F ( z ) + ∑ k = 0 m − 1 f ( k − m ) z − k \colorbox{orange} {$f(k-m)\leftrightarrow z^{-m}F(z)+\sum_{k=0}^{m-1} f(k-m)z^{-k}$} f(k−m)↔z−mF(z)+∑k=0m−1f(k−m)z−k
f ( k − 1 ) ↔ z − 1 F ( z ) + f ( − 1 ) f(k-1)\leftrightarrow z^{-1}F(z)+f(-1) f(k−1)↔z−1F(z)+f(−1)
f ( k − 2 ) ↔ z − 2 F ( z ) + f ( − 2 ) + f ( − 1 ) z − 1 f(k-2)\leftrightarrow z^{-2}F(z)+f(-2)+f(-1)z^{-1} f(k−2)↔z−2F(z)+f(−2)+f(−1)z−1
f ( k − 3 ) ↔ z − 3 F ( z ) + f ( − 3 ) + f ( − 2 ) z − 1 + f ( − 1 ) z − 2 f(k-3)\leftrightarrow z^{-3}F(z)+f(-3)+f(-2)z^{-1}+f(-1)z^{-2} f(k−3)↔z−3F(z)+f(−3)+f(−2)z−1+f(−1)z−2
f ( k + m ) ↔ z m F ( z ) − ∑ k = 0 m − 1 f ( k ) z m − k \colorbox{orange} {$f(k+m)\leftrightarrow z^{m}F(z)-\sum_{k=0}^{m-1} f(k)z^{m-k}$} f(k+m)↔