拉普拉斯反变换

拉普拉斯反变换

拉普拉斯反变换

查表法

  • 给定 F(s),通过查表拉普拉斯变换对可以把它变换回时域得到f(t)

假设 F(s)的一般形式为

F ( s ) = N ( s ) D ( s ) F(s)=\frac{N(s)}{D(s)} F(s)=D(s)N(s)

  • N(s)是分子多项式D(s)是分母多项式,N(s)=0的根称 F(S)的零点,D(s)=0的根称 F(s)的极点

反变换步骤

  • 用部分分式展开法将F(s)分解成简单项之和。
  • 查表求得每一展开项的反变换

单极点

单极点

单极点是一阶极点的情况。如果 F(s)只有一阶极点,那么D(s)变成一阶因子的乘积,得到:

F ( s ) = N ( s ) ( s + p 1 ) ( s + p 2 ) ⋯ ( s + p n ) F(s)=\frac{N(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)} F(s)=(s+p1)(s+p2)(s+pn)N(s)

  • 式中s=- p 1 p_1 p1,- p 2 p_2 p2,- p n p_n pn是单极点,且对于任何i≠j有 p i p_i pi p j p_j pj(极点不同)

假设N(s)的阶数小于 D(s)的阶数,用上式的部分分式法分解F(s),则有:

F ( s ) = k 1 s + p 1 + k 2 s + p 2 + ⋯ + k n s + p n \color{red}\begin{aligned}F(s)=\frac{k_1}{s+p_1}+\frac{k_2}{s+p_2}+\cdots+\frac{k_n}{s+p_n}\end{aligned} F(s)=s+p1k1+s+p2k2++s+pnkn

展开系数k,kz,⋯,kn称为F(s)的留数。可以用留数法展开系数

两边同乘以( s s s+ p 1 p_1 p1 ),得:

( s + p 1 ) F ( s ) = k 1 + ( s + p 1 ) k 2 s + p 2 + ⋯ + ( s + p 1 ) k n s + p n (s+p_1)F(s)=k_1+\frac{(s+p_1)k_2}{s+p_2}+\cdots+\frac{(s+p_1)k_n}{s+p_n} (s+p1)F(s)=k1+s+p2(s+p1)k2++s+pn(s+p1)kn

因为 p i p_i pi p j p_j pj,令 s s s= s s s p 1 p_1 p1 ,上式右边仅剩k i _i i,因此:

( s 1 + p 1 ) F ( s ) ∣ s = − p 1 = k 1 (s_1+p_1)F(s)\mid_{s=-p_1}=k_1 (s1+p1)F(s)s=p1=k1

所以一般表达式:

k i = ( s + p i ) F ( s ) ∣ s = − p i k_i=(s+p_i)F(s)\mid_{s=-p_i} ki=(s+pi)F(s)s=pi

查表可得:

一旦k i _i i已知,用 F ( s ) = k 1 s + p 1 + k 2 s + p 2 + ⋯ + k n s + p n \begin{aligned}F(s)=\frac{k_1}{s+p_1}+\frac{k_2}{s+p_2}+\cdots+\frac{k_n}{s+p_n}\end{aligned} F(s)=s+p1k1+s+p2k2++s+pnkn,即可得到F(s)的反变换

因为该式中每一项的反变换 L − 1 [ k / ( s + a ) ] = k e − a t u ( t ) L^{-1}[k/(s+a)]=k\mathrm{e}^{-at}u(t) L1[k/(s+a)]=keatu(t)

由表可得:

f ( t ) = ( k 1 e − p 1 t + k 2 e − p 2 t + ⋯ + k n e − p n t ) u ( t ) \color{red}f(t)=(k_1e^{-p_1t}+k_2e^{-p_2t}+\cdots+k_ne^{-p_nt})u(t) f(t)=(k1ep1t+k2ep2t++knepnt)u(t)

多重极点

多重极点

假设 F(s)在s=- p p p处有n重极点,则可以把F(s)表示为:

F ( s ) = k n ( s + p ) n + k n − 1 ( s + p ) n − 1 + ⋯ + k 2 ( s + p ) 2 + k 1 s + p + F 1 ( s ) \color{red}F(s)=\frac{k_n}{(s+p)^n}+\frac{k_{n-1}}{(s+p)^{n-1}}+\cdots+\frac{k_2}{(s+p)^2}+\frac{k_1}{s+p}+F_1(s) F(s)=(s+p)nkn+(s+p)n1kn1++(s+p)2k2+s+pk1+F1(s)

其中,F 1 _1 1(s)是F(s)在s=- p p p处没有极点的部分。按前述方法,可求得展开系数kn为:

k n = ( s + p ) n F ( s ) ∣ s = − p k_n=(s+p)^nF(s)\mid_{s=-p} kn=(s+p)nF(s)s=p

为了确定k n − 1 _{n-1} n1,将F(s)的每一项乘以(s+p) n ^n n并对其微分以除去k n _n n ,然后令s=- p p p除去除k n − 1 _{n-1} n1以外的其他系数,得到:

k n − 1 = d d s [ ( s + p ) n F ( s ) ] ∣ s = − p \color{red}\begin{aligned}k_{n-1}&=\frac{d}{ds}[(s+p)^nF(s)]\mid_{s=-p}\end{aligned} kn1=dsd[(s+p)nF(s)]s=p

重复上述步骤可得:

k n − 2 = 1 2 ! d 2 d s 2 [ ( s + p ) n F ( s ) ] ∣ s = − p \color{red}k_{n-2}=\frac1{2!}\frac{d^2}{ds^2}[(s+p)^nF(s)]\mid_{s=-p} kn2=2!1ds2d2[(s+p)nF(s)]s=p

第m项变为:

k n − m = 1 m ! d m d s m [ ( s + p ) n F ( s ) ] ∣ s = − p \color{red}\begin{aligned}k_{n-m}&=\frac1{m!}\frac{d^m}{ds^m}[(s+p)^nF(s)]\mid_{s=-p}\end{aligned} knm=m!1dsmdm[(s+p)nF(s)]s=p

其中m=1,2,⋯,n-1。随着m的增加,微分变得难以处理。用部分分式法获得k1,k2,…,kn后,用反变换式:

L − 1 [ 1 ( s + a ) n ] = t n − 1 e − a t ( n − 1 ) ! u ( t ) \mathcal{L}^{-1}\biggl[\frac1{(s+a)^n}\biggr]=\frac{t^{n-1}e^{-at}}{(n-1)!}u(t) L1[(s+a)n1]=(n1)!tn1eatu(t)

F ( s ) = k n ( s + p ) n + k n − 1 ( s + p ) n − 1 + ⋯ + k 2 ( s + p ) 2 + k 1 s + p + F 1 ( s ) F(s)=\frac{k_n}{(s+p)^n}+\frac{k_{n-1}}{(s+p)^{n-1}}+\cdots+\frac{k_2}{(s+p)^2}+\frac{k_1}{s+p}+F_1(s) F(s)=(s+p)nkn+(s+p)n1kn1++(s+p)2k2+s+pk1+F1(s)右边每一项反变换得到:

f ( t ) = ( k 1 e − p t + k 2 t e − p t + k 3 2 ! t 2 e − p t + ⋯ + k n ( n − 1 ) ! t n − 1 e − p t ) u ( t ) + f 1 ( t ) \color{red}f(t)=(k_{1}e^{-pt}+k_{2}te^{-pt}+\frac{k_{3}}{2!}t^{2}e^{-pt}+\cdots+\frac{k_{n}}{(n-1)!}t^{n-1}e^{-pt})u(t)+f_{1}(t) f(t)=(k1ept+k2tept+2!k3t2ept++(n1)!kntn1ept)u(t)+f1(t)

复极点

复极点

  • 不重复的一对复极点称简单复极点,重复的复极点称为双重或多重复极点
  • 简单复极点可以是把 D(s)的每对复极点(二次项)表示为形如 ( s 2 + α ) 2 + β 2 (s^2+\alpha)^2+\beta^2 (s2+α)2+β2的完全平方
  • 然后用表求出该项的反变换

由于 N(s)和 D(s)具有实系数,故其复根一定是共轭成对出现的,所以F(s)的一般形式为:

F ( s ) = A 1 s + A 2 s 2 + a s + b + F 1 ( s ) \color{red}\begin{aligned}F(s)&=\frac{A_1s+A_2}{s^2+as+b}+F_1(s)\end{aligned} F(s)=s2+as+bA1s+A2+F1(s)

式中,F 1 _1 1(s)是F(s)中不含有共轭极点对的部分。为了构造完全平方,令

s 2 + a s + b = s 2 + 2 α s + α 2 + β 2 = ( s + α ) 2 + β 2 s^2+as+b=s^2+2\alpha s+\alpha^2+\beta^2=(s+\alpha)^2+\beta^2 s2+as+b=s2+2αs+α2+β2=(s+α)2+β2

同时令

A 1 s + A 2 = A 1 ( s + α ) + B 1 β   A_1s+A_2=A_1(s+\alpha)+B_1\beta  A1s+A2=A1(s+α)+B1β 

则F(s)变 :

F ( s ) = A 1 ( s + α ) ( s + α ) 2 + β 2 + B 1 β ( s + α ) 2 + β 2 + F 1 ( s ) F(s)=\frac{A_1(s+\alpha)}{(s+\alpha)^2+\beta^2}+\frac{B_1\beta}{(s+\alpha)^2+\beta^2}+F_1(s) F(s)=(s+α)2+β2A1(s+α)+(s+α)2+β2B1β+F1(s)

从表可知,反变换为:

f ( t ) = ( A 1 e − α t cos ⁡ β t + B 1 e − α t sin ⁡ β t ) u ( t ) + f 1 ( t ) \color{red}f(t)=(A_1e^{-\alpha t}\cos\beta t+B_1e^{-\alpha t}\sin\beta t)u(t)+f_1(t) f(t)=(A1eαtcosβt+B1eαtsinβt)u(t)+f1(t)

总结

求解反变换

  • 无论是单极点、多重极点还是复极点,计算展开系数的一般方法是代数方法
  • 首先令 F(s)=N(s)/D(s)等于一个含有未知常数的展开式
  • 再用公共分母遍乘以展开式,然后令其系数相等,即可确定未知常数
  • 即通过代数方法求解一组由比较s的同次幂系数所得的联立方程

计算拉普拉斯反变换

计算拉普拉斯反变换

  • 求F(s)的拉普拉斯反变换

F ( s ) = 3 s − 5 s + 1 + 6 s 2 + 4 F(s)=\frac{3}{s}-\frac{5}{s+1}+\frac{6}{s^2+4} F(s)=s3s+15+s2+46

反变换为:

f ( t ) = L − 1 [ F ( s ) ] = L − 1 ( 3 s ) − L − 1 ( 5 s + 1 ) + L − 1 ( 6 s 2 + 4 ) \begin{aligned}f(t)=\mathcal{L}^{-1}[F(s)]&=\mathcal{L}^{-1}\bigg(\frac3s\bigg)-\mathcal{L}^{-1}\bigg(\frac5{s+1}\bigg)+\mathcal{L}^{-1}\bigg(\frac6{s^2+4}\bigg)\end{aligned} f(t)=L1[F(s)]=L1(s3)L1(s+15)+L1(s2+46)

= ( 3 − 5 e − t + 3 sin ⁡ 2 t ) u ( t ) , t ≥ 0 =(3-5e^{-t}+3\sin2t)u(t),\quad t\geq0 =(35et+3sin2t)u(t),t0

  • 每一项的反变换可以查表得到

计算拉普拉斯反变换

  • 已知F(s),求f(t)

F ( s ) = s 2 + 12 s ( s + 2 ) ( s + 3 ) F(s)=\frac{s^2+12}{s(s+2)(s+3)} F(s)=s(s+2)(s+3)s2+12

前面的例题中已经给出部分分式。首先要求出部分分式展开式。因为它有3个极点,令:

s 2 + 12 s ( s + 2 ) ( s + 3 ) = A s + B s + 2 + C s + 3 \frac{s^2+12}{s(s+2)(s+3)}=\frac As+\frac B{s+2}+\frac C{s+3} s(s+2)(s+3)s2+12=sA+s+2B+s+3C

其中A、B和C是待定常数。可用留数法确定这些待定常数

留数法

A = s F ( s ) ∣ s = 0 = s 2 + 12 ( s + 2 ) ( s + 3 ) ∣ s = 0 = 12 ( 2 ) ( 3 ) = 2 A=sF(s)\left.\right|_{s=0}=\frac{s^2+12}{(s+2)(s+3)}\left.\right|_{s=0}=\frac{12}{(2)(3)}=2 A=sF(s)s=0=(s+2)(s+3)s2+12s=0=(2)(3)12=2

B = ( s + 2 ) F ( s ) ∣ s = − 2 = s 2 + 12 s ( s + 3 ) ∣ s = − 2 = 4 + 12 ( − 2 ) ( 1 ) = − 8 B=(s+2)F(s)\left.\right|_{s=-2}=\frac{s^2+12}{s(s+3)}\left.\right|_{s=-2}=\frac{4+12}{(-2)(1)}=-8 B=(s+2)F(s)s=2=s(s+3)s2+12s=2=(2)(1)4+12=8

C = ( s + 3 ) F ( s ) ∣ s = − 3 = s 2 + 12 s ( s + 2 ) ∣ s = − 3 = 9 + 12 ( − 3 ) ( − 1 ) = 7 C=(s+3)F(s)\left.\right|_{s=-3}=\frac{s^2+12}{s(s+2)}\left.\right|_{s=-3}=\frac{9+12}{(-3)(-1)}=7 C=(s+3)F(s)s=3=s(s+2)s2+12s=3=(3)(1)9+12=7

代数法

两边同乘以s(s+2)(s+3)得:

s 2 + 12 = A ( s + 2 ) ( s + 3 ) + B s ( s + 3 ) + C s ( s + 2 ) s^2+12=A(s+2)(s+3)+Bs(s+3)+Cs(s+2) s2+12=A(s+2)(s+3)+Bs(s+3)+Cs(s+2)

原式变为:

F ( s ) = 2 s − 8 s + 2 + 7 s + 3 F(s)=\frac2s-\frac8{s+2}+\frac7{s+3} F(s)=s2s+28+s+37

令s的同次幂的系数相等,得:

常数 12 = 6 A ⇒ A = 2 s 0 = 5 A + 3 B + 2 C ⇒ 3 B + 2 C = − 10 s 2 1 = A + B + C ⇒ B + C = − 1 \begin{matrix}\text{常数}&12=6A&\Rightarrow&A=2\\s&0=5A+3B+2C&\Rightarrow&3B+2C=-10\\s^2&1=A+B+C&\Rightarrow&B+C=-1\end{matrix} 常数ss212=6A0=5A+3B+2C1=A+B+CA=23B+2C=10B+C=1

因此;

A = 2 , B = − 8 , C = 7 A=2,B=-8,C=7 A=2,B=8,C=7

求出每一项的反变换,得到:

f ( t ) = ( 2 − 8 e − 2 t + 7 e − 3 t ) u ( t ) f(t)=(2-8e^{-2t}+7e^{-3t})u(t) f(t)=(28e2t+7e3t)u(t)

计算拉普拉斯反变换

  • 已知V(s),求v(t)

V ( s ) = 10 s 2 + 4 s ( s + 1 ) ( s + 2 ) 2 V(s)=\frac{10s^2+4}{s(s+1)(s+2)^2} V(s)=s(s+1)(s+2)210s2+4

函数 V(s)有重根。令:

V ( s ) = 10 s 2 + 4 s ( s + 1 ) ( s + 2 ) 2 = A s + B s + 1 + C ( s + 2 ) 2 + D s + 2 V(s)=\frac{10s^{2}+4}{s(s+1)(s+2)^{2}}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{\left(s+2\right)^{2}}+\frac{D}{s+2} V(s)=s(s+1)(s+2)210s2+4=sA+s+1B+(s+2)2C+s+2D

留数法

A = s V ( s ) ∣ s = 0 = 10 s 2 + 4 ( s + 1 ) ( s + 2 ) 2 ∣ s = 0 = 4 ( 1 ) ( 2 ) 2 = 1 A=sV(s)\left.\right|_{s=0}=\frac{10s^2+4}{(s+1)(s+2)^2}\left.\right|_{s=0}=\frac4{(1)(2)^2}=1 A=sV(s)s=0=(s+1)(s+2)210s2+4s=0=(1)(2)24=1

B = ( s + 1 ) V ( s ) ∣ s = − 1 = 10 s 2 + 4 s ( s + 2 ) 2 ∣ s = − 1 = 14 ( − 1 ) ( 1 ) 2 = − 14 B=(s+1)V(s)\left.\right|_{s=-1}=\frac{10s^2+4}{s(s+2)^2}\left.\right|_{s=-1}=\frac{14}{(-1)(1)^2}=-14 B=(s+1)V(s)s=1=s(s+2)210s2+4s=1=(1)(1)214=14

C = ( s + 2 ) 2 V ( s ) ∣ s = − 2 = 10 s 2 + 4 s ( s + 1 ) ∣ s = − 2 = 44 ( − 2 ) ( − 1 ) = 22 C=(s+2)^2V(s)\left.\right|_{s=-2}=\frac{10s^2+4}{s(s+1)}\left.\right|_{s=-2}=\frac{44}{(-2)(-1)}=22 C=(s+2)2V(s)s=2=s(s+1)10s2+4s=2=(2)(1)44=22

D = d d s [ ( s + 2 ) 2 V ( s ) ] ∣ s = − 2 = d d s ( 10 s 2 + 4 s 2 + s ) ∣ s = − 2 \left.D=\frac d{ds}[(s+2)^2V(s)]\left.\right|_{s=-2}=\frac d{ds}{\left(\frac{10s^2+4}{s^2+s}\right)}\right|_{s=-2} D=dsd[(s+2)2V(s)]s=2=dsd(s2+s10s2+4) s=2

= ( s 2 + s ) ( 20 s ) − ( 10 s 2 + 4 ) ( 2 s + 1 ) ( s 2 + s ) 2 ∣ s = − 2 = 52 4 = 13 =\left.\frac{(s^2+s)(20s)-(10s^2+4)(2s+1)}{(s^2+s)^2}\right|_{s=-2}=\frac{52}4=13 =(s2+s)2(s2+s)(20s)(10s2+4)(2s+1) s=2=452=13

代数法

两边同乘以 s ( s + 1 ) ( s + 2 ) 2 s(s+1)(s+2)^2 s(s+1)(s+2)2得:

10 s 2 + 4 = A ( s + 1 ) ( s + 2 ) 2 + B s ( s + 2 ) 2 + C s ( s + 1 ) + D s ( s + 1 ) ( s + 2 ) 10s^2+4=A(s+1)(s+2)^2+Bs(s+2)^2+Cs(s+1)+Ds(s+1)(s+2) 10s2+4=A(s+1)(s+2)2+Bs(s+2)2+Cs(s+1)+Ds(s+1)(s+2)

令s的同次幂系数相等,得:

Constant: 4 = 4 A ⇒ A = 1 s: 0 = 8 A + 4 B + C + 2 D ⇒ 4 B + C + 2 D = − 8 s 2 : 10 = 5 A + 4 B + C + 3 D ⇒ 4 B + C + 3 D = 5 s 3 : 0 = A + B + D ⇒ B + D = − 1 \begin{aligned} & \text{Constant:}\quad4=4A\quad\Rightarrow\quad A=1\\ & \text{s:}\quad0=8A+4B+C+2D\quad\Rightarrow\quad4B+C+2D=-8\\ & s^2\text{:}\quad10=5A+4B+C+3D\quad\Rightarrow\quad4B+C+3D=5\\ & s^3\text{:}\quad0=A+B+D\quad\Rightarrow\quad B+D=-1\end{aligned} Constant:4=4AA=1s:0=8A+4B+C+2D4B+C+2D=8s2:10=5A+4B+C+3D4B+C+3D=5s3:0=A+B+DB+D=1

解得:

A = 1 ,   B = − 14 ,   C = 22 ,   D = 13 A=1,~B=-14,~C=22,~D=13 A=1, B=14, C=22, D=13

原式变为:

F ( s ) = 2 s − 8 s + 2 + 7 s + 3 F(s)=\frac2s-\frac8{s+2}+\frac7{s+3} F(s)=s2s+28+s+37

求出每一项的反变换,得到:

f ( t ) = ( 2 − 8 e − 2 t + 7 e − 3 t ) u ( t ) f(t)=(2-8\mathrm{e}^{-2t}+7\mathrm{e}^{-3t})u(t) f(t)=(28e2t+7e3t)u(t)

求频域函数的反变换:

  • 求频域函数的反变换:

H ( s ) = 20 ( s + 3 ) ( s 2 + 8 s + 25 ) H(s)=\frac{20}{(s+3)(s^2+8s+25)} H(s)=(s+3)(s2+8s+25)20

H(s)在s 2 ^2 2+8s+25=0处有一对复极点s=-4士j3。令;

H ( s ) = 20 ( s + 3 ) ( s 2 + 8 s + 25 ) = A s + 3 + B s + C ( s 2 + 8 s + 25 ) H(s)=\frac{20}{(s+3)(s^2+8s+25)}=\frac A{s+3}+\frac{Bs+C}{(s^2+8s+25)} H(s)=(s+3)(s2+8s+25)20=s+3A+(s2+8s+25)Bs+C

代数法

两边同乘以(s+3)(s 2 ^2 2+8s+25),得:

20 = A ( s 2 + 8 s + 25 ) + ( B s + C ) ( s + 3 ) = A ( s 2 + 8 s + 25 ) + B ( s 2 + 3 s ) + C ( s + 3 ) 20=A(s^2+8s+25)+(Bs+C)(s+3)=A(s^2+8s+25)+B(s^2+3s)+C(s+3) 20=A(s2+8s+25)+(Bs+C)(s+3)=A(s2+8s+25)+B(s2+3s)+C(s+3)

令s的同次幂的系数相等,得:

s 2 0 = A + B ⇒ A = − B s 0 = 8 A + 3 B + C = 5 A + C ⇒ C = − 5 A 常数 20 = 25 A + 3 C = 25 A − 15 A ⇒ A = 2 \begin{matrix}s^2&0=A+B&\Rightarrow&A=-B\\s&0=8A+3B+C=5A+C&\Rightarrow&C=-5A\\\text{常数}&20=25A+3C=25A-15A&\Rightarrow&A=2\end{matrix} s2s常数0=A+B0=8A+3B+C=5A+C20=25A+3C=25A15AA=BC=5AA=2

即得:

B = − 2 , C = − 10 B=-2\text{,}C=-10 B=2,C=10

因此:

H ( s ) = 2 s + 3 − 2 s + 10 s 2 + 8 s + 25 = 2 s + 3 − 2 ( s + 4 ) + 2 ( s + 4 ) 2 + 9 H(s)=\frac2{s+3}-\frac{2s+10}{s^2+8s+25}=\frac2{s+3}-\frac{2(s+4)+2}{(s+4)^2+9} H(s)=s+32s2+8s+252s+10=s+32(s+4)2+92(s+4)+2

= 2 s + 3 − 2 ( s + 4 ) ( s + 4 ) 2 + 9 − 2 3 3 ( s + 4 ) 2 + 9 =\frac2{s+3}-\frac{2(s+4)}{(s+4)^2+9}-\frac23\frac3{(s+4)^2+9} =s+32(s+4)2+92(s+4)32(s+4)2+93

求出每一项的反变换,得到:

h ( t ) = ( 2 e − 3 t − 2 e − 4 t c o s 3 t − 2 3 e − 4 t s i n 3 t ) u ( t ) h(t)=(2\mathrm{e}^{-3t}-2\mathrm{e}^{-4t}\mathrm{cos}3t-\frac{2}{3}\mathrm{e}^{-4t}\mathrm{sin}3t)u(t) h(t)=(2e3t2e4tcos3t32e4tsin3t)u(t)

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值