z变换 信号与系统

z变换

1.z变换

序列f(k)的双边z变换:

F ( z ) = ∑ k = − ∞ ∞ f ( k ) z − k F(z)=\sum_{k=-\infty }^{\infty } f(k)z^{-k} F(z)=k=f(k)zk

序列f(k)的单边z变换:

F ( z ) = ∑ k = 0 ∞ f ( k ) z − k F(z)=\sum_{k=0}^{\infty } f(k)z^{-k} F(z)=k=0f(k)zk

若f(k)为因果序列,则单边z变换和双边z变换相等。

2.收敛域

∑ k = − ∞ ∞ ∣ f ( k ) z − k ∣ < ∞ \sum_{k=-\infty }^{\infty } |f(k)z^{-k}|<\infty k=f(k)zk<时,其z变换存在。称为绝对可和条件,它是序列f(k)的z变换存在的充分必要条件

(1)收敛域的定义:
序列f(k)满足 ∑ k = − ∞ ∞ ∣ f ( k ) z − k ∣ < ∞ \sum_{k=-\infty }^{\infty } |f(k)z^{-k}|<\infty k=f(k)zk<,所有z值组成的集合称为z变换F(z)的收敛域。
(2)收敛域分类

整个z平面收敛
有限序列z变换的收敛域一般为 0 < ∣ z ∣ < ∞ 0<|z|<\infty 0<z<

例如:
f ( k ) = δ ( k ) ↔ F ( z ) = ∑ k = 0 ∞ δ ( k ) z − k = 1 \large f(k)=\delta (k)\leftrightarrow F(z)=\sum_{k=0}^{\infty }\delta (k)z^{-k}=1 f(k)=δ(k)F(z)=k=0δ(k)zk=1 其单边双边z变换相等,其收敛域为整个z平面

部分z平面收敛
因果序列
f ( k ) = a k ε ( k ) ↔ F ( z ) = z z − a , ∣ z ∣ > ∣ a ∣ \large f(k)=a^{k}\varepsilon (k)\leftrightarrow F(z)=\frac{z}{z-a},|z|>|a| f(k)=akε(k)F(z)=zaz,z>a
在这里插入图片描述
反因果序列
f ( k ) = b k ε ( − k − 1 ) ↔ F ( z ) = − z z − b , ∣ z ∣ < ∣ b ∣ \large f(k)=b^{k}\varepsilon (-k-1)\leftrightarrow F(z)=\frac{-z}{z-b},|z|<|b| f(k)=bkε(k1)F(z)=zbz,z<b
在这里插入图片描述
双边序列
f ( k ) = a k ε ( k ) + b k ε ( − k − 1 ) ↔ F ( z ) = − z z − b + z z − a , ∣ a ∣ < ∣ z ∣ < ∣ b ∣ \large f(k)=a^{k}\varepsilon (k)+b^{k}\varepsilon (-k-1)\leftrightarrow F(z)=\frac{-z}{z-b}+\frac{z}{z-a},|a|<|z|<|b| f(k)=akε(k)+bkε(k1)F(z)=zbz+zaz,a<z<b
在这里插入图片描述

3.常用z变换

f(k)F(z)收敛域
δ ( k ) \large\delta (k) δ(k) 1 1 1 全 平 面 全平面
ε ( k ) \large\varepsilon(k) ε(k) z z − 1 \Large\frac{z}{z-1} z1z ∣ z ∣ > 1 \mid z\mid >1 z>1
a k ε ( k ) \large a^{k}\varepsilon (k) akε(k) z z − a \Large\frac{z}{z-a} zaz ∣ z ∣ > ∣ a ∣ \mid z\mid >\mid a \mid z>a
− ε ( − k − 1 ) \large-\varepsilon(-k-1) ε(k1) z z − 1 \Large\frac{z}{z-1} z1z ∣ z ∣ < 1 \mid z\mid <1 z<1
− a k ε ( − k − 1 ) \large -a^{k}\varepsilon (-k-1) akε(k1) z z − a \Large\frac{z}{z-a} zaz ∣ z ∣ < ∣ a ∣ \mid z\mid <\mid a \mid z<a
a k ε ( k ) − b k ε ( − k − 1 ) \large a^{k}\varepsilon (k)-b^{k}\varepsilon (-k-1) akε(k)bkε(k1) z z − b + z z − a \Large\frac{z}{z-b}+\frac{z}{z-a} zbz+zaz ∣ a ∣ < ∣ z ∣ < ∣ b ∣ \mid a \mid<\mid z\mid <\mid b \mid a<z<b
δ ( k − m ) \large\delta (k-m) δ(km) z − m \large z^{-m} zm ∣ z ∣ > 0 \mid z\mid >0 z>0
1 1 1 z z − 1 \Large\frac{z}{z-1} z1z ∣ z ∣ > 1 \mid z\mid >1 z>1
k ε ( k ) \large k\varepsilon (k) kε(k) z ( z − 1 ) 2 \Large\frac{z}{(z-1)^{2}} (z1)2z ∣ z ∣ > 1 \mid z\mid >1 z>1
k a k − 1 ε ( k ) \large ka^{k-1}\varepsilon (k) kak1ε(k) z ( z − a ) 2 \Large\frac{z}{(z-a)^{2}} (za)2z ∣ z ∣ > ∣ a ∣ \mid z\mid >\mid a \mid z>a
cos ⁡ ( β k ) ε ( k ) \large\cos (\beta k)\varepsilon (k) cos(βk)ε(k) z 2 − z cos ⁡ β z 2 − 2 z cos ⁡ β + 1 \Large\frac{z^{2}-z\cos \beta }{z^{2}-2z\cos \beta+1} z22zcosβ+1z2zcosβ ∣ z ∣ > 1 \mid z\mid >1 z>1
sin ⁡ ( β k ) ε ( k ) \large\sin (\beta k)\varepsilon (k) sin(βk)ε(k) z sin ⁡ β z 2 − 2 z cos ⁡ β + 1 \Large\frac{z\sin \beta }{z^{2}-2z\cos \beta+1} z22zcosβ+1zsinβ ∣ z ∣ > 1 \mid z\mid >1 z>1
a k cos ⁡ ( β k ) ε ( k ) \large a^{k}\cos (\beta k)\varepsilon (k) akcos(βk)ε(k) z ( z − a cos ⁡ β ) z 2 − 2 a z cos ⁡ β + a 2 \Large\frac{z(z-a\cos \beta) }{z^{2}-2az\cos \beta+a^{2}} z22azcosβ+a2z(zacosβ) ∣ z ∣ > ∣ a ∣ \mid z\mid >\mid a \mid z>a
a k sin ⁡ ( β k ) ε ( k ) \large a^{k}\sin(\beta k)\varepsilon (k) aksin(βk)ε(k) a z sin ⁡ β z 2 − 2 a z cos ⁡ β + a 2 \Large\frac{az\sin \beta }{z^{2}-2az\cos \beta+a^{2}} z22azcosβ+a2azsinβ ∣ z ∣ > ∣ a ∣ \mid z\mid >\mid a \mid z>a
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值