超级传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1299
题目大意:
有(1 / x) + (1 / y) = (1 / n),给出n(n < 10 的9次方),问满足上式的x,y有多少组
题目分析:
很容易知道:x、y是大于n的;
设y = n + k ( k > = 1),则:x = (n 的平方) / k + n;
所以本题关键是找到使x 为整数的k的个数,
也就是找 n平方 的因子 的个数
PS:网上的解题报告中好多人都说质因子,我只敢说因子,但小菜数学不好,不敢说质因子有没有错,
难道质因子的意思就是因子?还是是质数的因子?
言归正传 求一个数的因子数怎么求呢?
引用一个定理
一个正整数 n 可以用素因子唯一表示为 p1^r1 * p2^r2 * ... pk^rk (其中 pi 为素数) , 那么这个数的因子的个数就是,(r1+1)*(r2+1)*...*(rk+1). 可是这个定理的使用范围太小了
那么n*n就是 (p1^r1 * p2^r2 * ... pk^rk ) *( p1^r1 * p2^r2 * ... pk^rk) ,它的因子的个数就是 (2*r1+1)*(2*r2+1)*...*(2*rk+1).
于是重点在于筛选素数:
我用了两个方法学习:筛选法求素数, 随机素数测试;
求素数的方法详细这里就不讨论了。。。
#include<iostream>
#include<cmath>
using namespace std;
//筛选法选素数
const int MAXN = 40000;
bool is[MAXN];int prm[MAXN];
int getprm()
{
int i,j,k=0;
int s,e = (int)(sqrt(MAXN+0.0)+1);
memset(is,1,sizeof(is));
prm[k++] = 2; is[0] = is[1] = 0;
for(i=4;i<MAXN;i+=2) is[i] = 0;
for(i=3;i<e;i++)
{
if(is[i] == 1)
{
prm[k++] = i;
for(s = i*2,j=i*i;j<MAXN;j+=s)
{
//j,i是奇数,所以j+i*奇数是偶数,不用考虑
is[j] = 0;
}
}
}
for(;i<MAXN;i+=2) if(is[i]) prm[k++] = i;
return k;
}
// 随机素数测试(伪素数原理)
int witness(int a, int n)
{
int x, d=1, i = ceil(log(n - 1.0) / log(2.0)) - 1;
for ( ; i >= 0; i--) {
x = d; d = (d * d) % n;
if (d==1 && x!=1 && x!=n-1) return 1;
if (((n-1) & (1<<i)) > 0) d = (d * a) % n;
}
return (d == 1 ? 0 : 1);
}
int miller(int n, int s = 50)
{
if (n == 2) return 1;
if ((n % 2) == 0) return 0;
int j, a;
for (j = 0; j < s; j++) {
a = rand() * (n-2) / RAND_MAX + 1;
// rand()只能随机产生[0, RAND_MAX)内的整数
// 而且这个RAND_MAX只有32768直接%n的话永远也产生不了
// [RAND-MAX, n)之间的数
if (witness(a, n)) return 0;
}
return 1;
}
int getprm2()
{
int i;
int k=0;
for(i=1;i<MAXN;i++)
{
if(miller(i) == 1) prm[k++] = i;
}
return k;
}
int main()
{
int i,e,t,n;
int temp,cn;
int cnt = 0;
int sum;
scanf("%d",&t);
//cn = getprm(); //筛选法 78MS 288K
cn = getprm2(); //随机素数检测(s = 50 156MS 256K)(s=10 93MS 256K )
while(t--)
{
cnt++;
scanf("%d",&n);
temp = (int)(sqrt(n+0.0)+1);
sum = 1;
for(i=0;i<cn;i++)
{
e = 0;
if(prm[i] > (int)(sqrt(n+0.0)+1)) break;
while(n % prm[i] == 0)
{
n /= prm[i];
e++;
}
sum *= (1+2*e);
}
if(n > 1) sum *=3;
printf("Scenario #%d:\n%d\n\n",cnt,(sum+1)/2);
}
return 0;
}