bzoj1009[GT考试] dp+矩阵快速幂

10 篇文章 0 订阅
9 篇文章 0 订阅

http://www.lydsy.com/JudgeOnline/problem.php?id=1009


题意:构造一个字符串(数字0-9)不含一个子串的个数


我这么蒟蒻肿么可能想到是dp嘛~~~


定义f[i][j]表示当前构造了i位,与模式串p匹配了前j位的方案数

然后枚举下一位填什么,然后乘上当前构造出来的和模式串匹配到k的方案数。

即是f[i+1][k]+=f[i][j]*A[j][k].(因为从j转移到k,可以用的数字不一定只有一个)


这里A[j][k]表示当前和p匹配到j,再加一位和p匹配到k的方案数


观察一下,这个式子满足矩阵的性质,于是就可以用矩阵来做。


终点是构造A[][](矩阵大小不超过20*20)

可以这么搞

对于1-m的这么长的式子,假设当前处理到第j位,然后枚举下一个数字是什么,看能转到哪一个k,就把转移矩阵A[j][k]+1.

这种搞法的正确性一开始我非常的不理解,用了好长时间才弄明白。


我们可以这么看,把它想象成已经处理好next数组的p串,和文本串s(假想)来匹配


假设已经匹配到前j位,然后j+1位就会出现要么相同,要么不同,不同的话就相当于一个s和p匹配失配,j就会转到next[j](k),转后就把这个转移路径+1.

构造的时候把j当成i而已,思路大致是:   假设前i位匹配成功,再加一位(枚举),然后当成一个新串s和p匹配,如果匹配了前k位,就把A[j][k]+1.



好多题解没有讲这个矩阵的构造原理,我也是花了好长时间阅读翻译代码的- -


真是蒟蒻啊~~~~~~~~~~~~~~~~~~~~~~


附上代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
int n,m,M;
/*

*/
int next[25];
char p[25];
struct Mat
{
	int mat[25][25];
	Mat()
	{
		memset(mat,0,sizeof(mat));
	}
};
Mat operator *(Mat a,Mat b)
{
	Mat c;
	for(int k=0;k<m;k++)
	{
		for(int i=0;i<m;i++)
		{
			for(int j=0;j<m;j++)
			{
				c.mat[i][j]+=(a.mat[i][k]%M)*(b.mat[k][j]%M);
				c.mat[i][j]%=M;
			}
		}
	}
	return c;
}
Mat operator ^(Mat a,int k)
{
	Mat c;
	for(int i=0;i<m;i++)c.mat[i][i]=1;
	for(;k;k>>=1)
	{
		if(k&1)c=c*a;
		a=a*a;
	}
	return c;
}
int main()
{
	scanf("%d%d%d",&n,&m,&M);
	scanf("%s",p+1);
	int j=0;
	for(int i=2;i<=m;i++)
    {
    	while(j>0&&p[j+1]!=p[i])j=next[j];
    	if(p[j+1]==p[i])j++;
    	next[i]=j;
    }
    Mat T;
    for(int i=0;i<m;i++)
    {
    	for(int j=0;j<=9;j++)
    	{
    		int t=i;
    		while(t>0&&p[t+1]-'0'!=j)t=next[t];
    		if(p[t+1]-'0'==j)t++;
    		if(t!=m)T.mat[i][t]=(T.mat[i][t]+1)%M;
    	}
    }
    Mat S;
    S=T^n;
    int ans=0;
    for(int i=0;i<m;i++)
	{
		ans+=S.mat[0][i];
		ans%=M;
	}
	printf("%d\n",ans);
	return 0;
}





题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值