晶体塑形自学1—大变形
引言
如下图所示,变形前后构型发生变化,当变化足够下,就可以忽略初始构型和变形后构型的区别,即小变形假设。
而大变形,更准确的说是有限变形,就是在描述应力和应变时考虑构型变化的影响。
小变形假设下,名义应力
p
\bm{p}
p 约等于 真应力
σ
\bm{\sigma}
σ
[
p
11
0
0
p
22
]
≈
[
σ
11
0
0
σ
22
]
\left[ \begin{matrix}p_{11}&0\\0& p_{22} \end{matrix}\right]\approx \left[ \begin{matrix}\sigma_{11}&0\\0& \sigma_{22} \end{matrix}\right]
[p1100p22]≈[σ1100σ22]
有限变形下,端面合力保持不变
[
p
11
0
0
p
22
]
=
[
1
+
ϵ
22
0
0
1
+
ϵ
11
]
[
σ
11
0
0
σ
22
]
\left[ \begin{matrix}p_{11}&0\\0& p_{22} \end{matrix}\right]=\left[ \begin{matrix}1+\epsilon_{22}&0\\0& 1+\epsilon_{11} \end{matrix}\right]\left[ \begin{matrix}\sigma_{11}&0\\0& \sigma_{22} \end{matrix}\right]
[p1100p22]=[1+ϵ22001+ϵ11][σ1100σ22]
考虑构型变化后,不能再认为两个应力相同。
应变度量
1、 变形梯度(二维):
F
=
[
∂
x
∂
X
∂
x
∂
Y
∂
y
∂
X
∂
y
∂
Y
]
\bm{F}=\large{\left[ \begin{matrix} \frac{\partial x}{\partial X}& \frac{\partial x}{\partial Y}\\\quad\\ \frac{\partial y}{\partial X}& \frac{\partial y}{\partial Y}\\ \end{matrix}\right]}
F=⎣⎢⎡∂X∂x∂X∂y∂Y∂x∂Y∂y⎦⎥⎤
F
F
F 的行列式用
J
J
J 表示:
J
=
d
e
t
(
F
)
J=det(F)
J=det(F),
J
J
J 是微元的体积变化(变化后的体积比上初始的体积)。
名义应变: ϵ = F T − I \bm{\epsilon=F^T-I} ϵ=FT−I (含旋转的话为非对称张量)
名义应变率:
ϵ
˙
=
F
˙
T
=
[
∂
v
x
∂
X
∂
v
y
∂
X
∂
v
x
∂
Y
∂
v
y
∂
Y
]
\dot\bm{\epsilon}=\dot\bm{F}^T=\large{\left[ \begin{matrix} \frac{\partial v_x}{\partial X}& \frac{\partial v_y}{\partial X}\\\quad\\ \frac{\partial v_x}{\partial Y}& \frac{\partial v_y}{\partial Y}\\ \end{matrix}\right]}
ϵ˙=F˙T=⎣⎢⎡∂X∂vx∂Y∂vx∂X∂vy∂Y∂vy⎦⎥⎤
2、Green应变张量
E
E
E 定义:
d
s
2
−
d
S
2
=
2
d
X
⋅
E
⋅
d
X
ds^2-dS^2 =2d\bm{X}\cdot \bm{E} \cdot d\bm{X}
ds2−dS2=2dX⋅E⋅dX
材料矢量
d
X
d\bm{X}
dX 长度平方的变化。
\quad
其中:
d
s
2
=
d
x
T
⋅
d
x
d
S
2
=
d
X
T
⋅
d
X
ds^2=d\bm{x}^T\cdot d\bm{x} \quad dS^2=d\bm{X}^T\cdot d\bm{X}
ds2=dxT⋅dxdS2=dXT⋅dX
d
x
T
⋅
d
x
−
d
X
T
⋅
d
X
=
(
F
⋅
d
X
)
T
⋅
(
F
⋅
d
X
)
−
d
X
T
⋅
d
X
=
d
X
T
⋅
F
T
⋅
F
⋅
d
X
−
d
X
T
⋅
I
⋅
d
X
=
d
X
T
⋅
(
F
T
⋅
F
−
I
)
⋅
d
X
\begin{aligned} d\bm{x}^T\cdot d\bm{x} -d\bm{X}^T\cdot d\bm{X} &=(\bm{F} \cdot d\bm{X})^T\cdot (\bm{F} \cdot d\bm{X})-d\bm{X}^T\cdot d\bm{X}\\\quad\\ &= d\bm{X}^T \cdot \bm{F}^T\cdot \bm{F} \cdot d\bm{X}-d\bm{X}^T\cdot \bm{I} \cdot d\bm{X}\\\quad \\&=d\bm{X}^T \cdot (\bm{F}^T\cdot \bm{F}-\bm{I}) \cdot d\bm{X} \end{aligned}
dxT⋅dx−dXT⋅dX=(F⋅dX)T⋅(F⋅dX)−dXT⋅dX=dXT⋅FT⋅F⋅dX−dXT⋅I⋅dX=dXT⋅(FT⋅F−I)⋅dX
因此
E
=
1
2
(
F
T
⋅
F
−
I
)
\bm{E}=\frac{1}{2}(\bm{F}^T\cdot \bm{F}-\bm{I})
E=21(FT⋅F−I) 或
E
i
j
=
1
2
(
F
i
k
F
k
j
−
δ
i
j
)
{E_{ij}}=\frac{1}{2}({F_{ik}}{F_{kj}}-\delta_{ij})
Eij=21(FikFkj−δij)
3、 变形率
变形率 D D D ,也称为速度应变,是变形的率度量。
首先,定义速度梯度
L
\bm{L}
L:
L
=
∂
v
∂
x
=
(
▽
v
)
T
=
(
g
r
a
d
v
)
T
或
L
i
j
=
∂
v
i
∂
x
j
\bm{L}=\frac{\partial \bm{v}}{\partial x}=\left(\bigtriangledown \bm{v} \right)^T=\left(grad\ \bm{v}\right)^T \quad 或\quad L_{ij}=\frac{\partial v_i}{\partial x_j}
L=∂x∂v=(▽v)T=(grad v)T或Lij=∂xj∂vi
L
=
∂
v
∂
x
=
∂
v
∂
X
∂
X
∂
x
=
F
˙
⋅
F
−
1
或
L
i
j
=
F
˙
i
k
F
k
j
−
1
\bm{L}=\frac{\partial \bm{v}}{\partial x}=\frac{\partial \bm{v}}{\partial \bm{X}} \frac{\partial \bm{X}}{\partial \bm{x}}=\bm{\dot{F}}\cdot\bm{F}^{-1} \quad 或\quad L_{ij}=\dot{F}_{ik}F_{kj}^{-1}
L=∂x∂v=∂X∂v∂x∂X=F˙⋅F−1或Lij=F˙ikFkj−1
速度梯度张量可分解为对称部分
D
\bm{D}
D 和反对称部分
W
\bm{W}
W
D
=
1
2
(
L
+
L
T
)
或
D
i
j
=
1
2
(
∂
v
i
∂
x
j
+
∂
v
j
∂
x
i
)
\bm{D}=\frac{1}{2}\left(\bm{L}+\bm{L}^T\right)\quad 或\quad D_{ij}=\frac{1}{2}\left(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i}\right)
D=21(L+LT)或Dij=21(∂xj∂vi+∂xi∂vj)
W
=
1
2
(
L
−
L
T
)
或
W
i
j
=
1
2
(
∂
v
i
∂
x
j
−
∂
v
j
∂
x
i
)
\bm{W}=\frac{1}{2}\left(\bm{L}-\bm{L}^T\right)\quad 或\quad W_{ij}=\frac{1}{2}\left(\frac{\partial v_i}{\partial x_j}-\frac{\partial v_j}{\partial x_i}\right)
W=21(L−LT)或Wij=21(∂xj∂vi−∂xi∂vj)
变形率是微小材料线段平方的变化率的度量:
∂
∂
t
(
d
s
2
)
=
∂
∂
t
(
d
x
T
⋅
d
x
)
=
(
d
v
T
⋅
d
x
)
+
(
d
x
T
⋅
d
v
)
=
(
(
L
⋅
d
x
)
T
⋅
d
x
)
+
(
d
x
T
⋅
(
L
⋅
d
x
)
)
=
(
d
x
T
⋅
L
T
⋅
d
x
)
+
(
d
x
T
⋅
L
⋅
d
x
)
=
2
(
d
x
T
⋅
D
⋅
d
x
)
\begin{aligned} \frac{\partial}{\partial t}(ds^2)&=\frac{\partial}{\partial t}(d\bm{x}^T\cdot d\bm{x})=(d\bm{v}^T\cdot d\bm{x})+(d\bm{x}^T\cdot d\bm{v})\\\quad\\ &=((\bm{L}\cdot d\bm{x})^T\cdot d\bm{x})+(d\bm{x}^T\cdot (\bm{L} \cdot d\bm{x}))\\\quad\\ &=(d\bm{x}^T\cdot\bm{L}^T\cdot d\bm{x})+(d\bm{x}^T\cdot \bm{L} \cdot d\bm{x})\\\quad\\ &=2(d\bm{x}^T\cdot\bm{D}\cdot d\bm{x}) \end{aligned}
∂t∂(ds2)=∂t∂(dxT⋅dx)=(dvT⋅dx)+(dxT⋅dv)=((L⋅dx)T⋅dx)+(dxT⋅(L⋅dx))=(dxT⋅LT⋅dx)+(dxT⋅L⋅dx)=2(dxT⋅D⋅dx)
4、Green应变率与变形率
E
˙
=
1
2
(
F
˙
T
⋅
F
+
F
T
⋅
F
˙
)
\dot\bm{E}=\frac{1}{2}(\dot\bm{F}^T\cdot \bm{F}+\bm{F}^T\cdot \dot\bm{F})
E˙=21(F˙T⋅F+FT⋅F˙)
D
=
1
2
(
F
˙
T
⋅
F
−
1
+
F
−
T
⋅
F
˙
)
\bm{D}=\frac{1}{2}(\dot\bm{F}^T\cdot \bm{F}^{-1}+\bm{F}^{-T}\cdot \dot\bm{F})
D=21(F˙T⋅F−1+F−T⋅F˙)
因此:
E
˙
=
(
F
T
⋅
D
⋅
F
)
或
D
=
(
F
⋅
D
⋅
F
T
)
\dot\bm{E}=(\bm{F}^T\cdot \bm{D}\cdot \bm{F})\quad 或\quad \bm{D}=(\bm{F}\cdot \bm{D}\cdot \bm{F}^T)
E˙=(FT⋅D⋅F)或D=(F⋅D⋅FT)
由此可知:
E
˙
\dot\bm{E}
E˙和
D
\bm{D}
D是同一个张量分别在初始构型上和当前构型上的分量。
计算不同应变率度量下外力对微元做功的功率
即,应力和应变率的共轭关系
外力对微元做功的功率表示为: W ˙ \dot{W} W˙
已知名义应力乘以名义应变率在初始构型上积分等于功率:
W
˙
=
p
:
ϵ
˙
T
d
V
=
p
:
F
˙
T
d
V
=
F
˙
:
p
T
d
V
\dot{W}=\bm{p:\dot\epsilon}^TdV=\bm{p:\dot F^T}dV=\bm{\dot F:p^T}dV
W˙=p:ϵ˙TdV=p:F˙TdV=F˙:pTdV
把应变率张量换成变形率
D
D
D:
W
˙
=
F
−
T
⋅
W
˙
⋅
F
T
d
V
=
F
−
T
⋅
F
˙
:
p
T
⋅
F
T
d
V
=
F
⋅
p
:
F
−
T
⋅
F
˙
d
V
\dot{W}=\bm{F}^{-T}\cdot\dot{W}\cdot\bm{F}^{T}dV=\bm{F}^{-T}\cdot\bm{\dot F:p^T}\cdot\bm{F}^{T}dV=\bm{F}\cdot\bm{p}:\bm{F}^{-T}\cdot\bm{\dot F}dV
W˙=F−T⋅W˙⋅FTdV=F−T⋅F˙:pT⋅FTdV=F⋅p:F−T⋅F˙dV
W
˙
=
F
⋅
W
˙
⋅
F
−
1
d
V
=
F
⋅
p
:
F
˙
T
⋅
F
−
1
d
V
\dot{W}=\bm{F}\cdot\dot{W}\cdot\bm{F}^{-1}dV=\bm{F}\cdot\bm{p:\dot F^T}\cdot\bm{F}^{-1}dV
W˙=F⋅W˙⋅F−1dV=F⋅p:F˙T⋅F−1dV
因此:
W
˙
=
1
2
F
⋅
p
:
(
F
˙
T
⋅
F
−
1
+
F
−
T
⋅
F
˙
)
d
V
=
F
⋅
p
:
D
d
V
=
F
⋅
p
:
D
J
−
1
d
v
\dot{W}=\frac{1}{2}\bm{F}\cdot\bm{p}:\left(\bm{\dot F^T}\cdot\bm{F}^{-1}+\bm{F}^{-T}\cdot\bm{\dot F}\right)dV\\\quad\\ =\bm{F}\cdot\bm{p}:\bm{D}dV=\bm{F}\cdot\bm{p}:\bm{D}J^{-1}dv
W˙=21F⋅p:(F˙T⋅F−1+F−T⋅F˙)dV=F⋅p:DdV=F⋅p:DJ−1dv
定义: σ = J − 1 F ⋅ p \bm{\sigma}=J^{-1}\bm{F}\cdot \bm{p} σ=J−1F⋅p(Cauchy应力,真应力); τ = J σ = F ⋅ p \bm{\tau}=J\bm{\sigma}=\bm{F}\cdot \bm{p} τ=Jσ=F⋅p(Kirchhoff应力)
注:1、 W ˙ \dot{W} W˙ 是标量,计算时可以交换位置;2、 d v = J d V dv=JdV dv=JdV
同理,应变率张量换位Green应变率
E
˙
\dot{E}
E˙:
W
˙
=
p
⋅
F
−
T
:
E
˙
d
V
=
S
:
E
˙
d
V
\dot{W}=\bm{p}\cdot\bm{F}^{-T}:\dot\bm{E}dV=\bm{S}:\dot\bm{E}dV
W˙=p⋅F−T:E˙dV=S:E˙dV
其中:
S
S
S 为第二Piola-Kirchhoff应力
客观应力率
最朴素的本构关系:应力=模量矩阵×应变,所以,应力增量=模量矩阵×应变增量。由于应变中不包含旋转,所以通过模量矩阵×应变增量求出的应力增量也不能包含旋转。
旋转造成的应力增量:
纯旋转 σ ^ X \bm{\hat\sigma_X} σ^X的分量 σ X i j \sigma_{X_{ij}} σXij 和 σ x \bm{\sigma_x} σx 的分量 σ i j \sigma_{ij} σij 相同
σ
X
−
σ
^
X
Δ
t
=
σ
X
−
R
⋅
σ
X
⋅
R
T
Δ
t
=
∂
(
R
⋅
σ
X
⋅
R
T
)
∂
R
∂
R
∂
t
=
R
˙
⋅
σ
X
⋅
R
T
+
R
⋅
σ
X
⋅
R
˙
T
=
R
˙
⋅
R
T
⋅
σ
x
⋅
R
⋅
R
T
+
R
⋅
R
T
⋅
σ
x
⋅
R
R
˙
T
=
σ
x
⋅
Ω
T
+
Ω
⋅
σ
x
\begin{aligned} \bm{\frac{\sigma_X-\hat\sigma_X}{\Delta t}}&=\bm{\frac{\sigma_X-R\cdot\sigma_X\cdot R^T}{\Delta t}}\\ &=\bm{\frac{\partial(R\cdot\sigma_X\cdot R^T)}{\partial R}}\bm{\frac{\partial R}{\partial t}}\\ &=\bm{\dot R\cdot\sigma_X\cdot R^T}+\bm{R\cdot\sigma_X\cdot \dot R^T}\\ &=\bm{\dot R\cdot R^T\cdot\sigma_x\cdot R\cdot R^T}+\bm{R\cdot R^T\cdot\sigma_x\cdot R\dot R^T}\\ &=\bm{\sigma_x\cdot \Omega^T+ \Omega\cdot\sigma_x} \end{aligned}
ΔtσX−σ^X=ΔtσX−R⋅σX⋅RT=∂R∂(R⋅σX⋅RT)∂t∂R=R˙⋅σX⋅RT+R⋅σX⋅R˙T=R˙⋅RT⋅σx⋅R⋅RT+R⋅RT⋅σx⋅RR˙T=σx⋅ΩT+Ω⋅σx
其中:
Ω
=
R
˙
⋅
R
T
\bm{\Omega=\dot R \cdot R^T}
Ω=R˙⋅RT 角速度张量
由此推出Green-Naghdi客观应力率:
σ
∇
G
=
D
σ
D
t
−
σ
⋅
Ω
T
−
Ω
⋅
σ
或
σ
i
j
∇
G
=
D
σ
i
j
D
t
+
σ
i
k
Ω
k
j
−
Ω
i
k
σ
k
j
\bm{\sigma^{\nabla G}}=\frac{D\bm{\sigma}}{Dt}-\bm{\sigma \cdot \Omega^T- \Omega\cdot\sigma}\quad 或\quad {\sigma^{\nabla G}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}+{\sigma_{ik}\Omega_{kj}- \Omega_{ik}\sigma_{kj}}
σ∇G=DtDσ−σ⋅ΩT−Ω⋅σ或σij∇G=DtDσij+σikΩkj−Ωikσkj
其中:
Ω
\bm{\Omega}
Ω为反对称阵,
Ω
T
=
−
Ω
\bm{\Omega}^T=-\bm{\Omega}
ΩT=−Ω
纯旋转下,速度梯度矩阵=转动矩阵(速度梯度矩阵的反对称部分)=角速度矩阵
L
=
W
=
Ω
\bm{L=W=\Omega}
L=W=Ω,用转动矩阵代替角速度矩阵得到Jaunmann客观应力率:
σ
∇
J
=
D
σ
D
t
−
σ
⋅
W
T
−
W
⋅
σ
或
σ
i
j
∇
G
=
D
σ
i
j
D
t
+
σ
i
k
W
k
j
−
W
j
k
σ
k
i
\bm{\sigma^{\nabla J}}=\frac{D\bm{\sigma}}{Dt}-\bm{\sigma \cdot W^T- W\cdot\sigma}\quad 或\quad {\sigma^{\nabla G}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}+{\sigma_{ik}W_{kj}- W_{jk}\sigma_{ki}}
σ∇J=DtDσ−σ⋅WT−W⋅σ或σij∇G=DtDσij+σikWkj−Wjkσki
用速度梯度矩阵代替角速度矩阵,由于速度梯度矩阵中含有变形量需要扣除,Truesdell客观应力率:
σ
∇
T
=
D
σ
D
t
−
d
i
v
(
v
)
σ
−
σ
⋅
L
T
−
L
⋅
σ
或
σ
i
j
∇
T
=
D
σ
i
j
D
t
−
∂
v
k
∂
x
k
σ
i
j
+
σ
i
k
L
k
j
−
L
j
k
σ
k
i
\bm{\sigma^{\nabla T}}=\frac{D\bm{\sigma}}{Dt}-\bm{div(v)\sigma}-\bm{\sigma \cdot L^T- L\cdot\sigma}\\\quad\\ 或\quad {\sigma^{\nabla T}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}-\frac{\partial v_k}{\partial x_k}\sigma_{ij}+{\sigma_{ik}L_{kj}- L_{jk}\sigma_{ki}}
σ∇T=DtDσ−div(v)σ−σ⋅LT−L⋅σ或σij∇T=DtDσij−∂xk∂vkσij+σikLkj−Ljkσki
参考书
- 《Nonlinear Finite Elements for Continua and Structures》 点击下载
- 《塑性细观力学》 王自强