scikit中StratifiedKFold和KFold区别,以及split方法

scikit中StratifiedKFold和KFold区别,以及split方法

测试代码:
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.model_selection import StratifiedKFold, KFold

test_array = np.zeros((8, 5))
for idx in range(test_array.shape[0]):
    test_array[idx] = np.arange((idx + 1)*10 + 1, (idx + 1)*10 + 6)
print(test_array)

print(f'{"-" * 30}')

test_array_lab = np.ones((8,))

skf = StratifiedKFold(n_splits=4, shuffle=True)
kf = KFold(n_splits=4, shuffle=True)

print('StratifiedKFold result')
for train, val in enumerate(skf.split(test_array, test_array_lab)):
    print(f'train idx: {train}, val idx: {val}')

print(f'{"-" * 30}')

print('KFold result')
for train, val in enumerate(kf.split(test_array, test_array_lab)):
    print(f'train idx: {train}, val idx: {val}')

对8组数据进行4折,输出训练集和测试集对应索引。

运行结果:
>>> test_array
[[11. 12. 13. 14. 15.]
 [21. 22. 23. 24. 25.]
 [31. 32. 33. 34. 35.]
 [41. 42. 43. 44. 45.]
 [51. 52. 53. 54. 55.]
 [61. 62. 63. 64. 65.]
 [71. 72. 73. 74. 75.]
 [81. 82. 83. 84. 85.]]
------------------------------
StratifiedKFold result:
train idx: 0, val idx: (array([2, 3, 4, 5, 6, 7]), array([0, 1]))
train idx: 1, val idx: (array([0, 1, 2, 3, 4, 7]), array([5, 6]))
train idx: 2, val idx: (array([0, 1, 2, 5, 6, 7]), array([3, 4]))
train idx: 3, val idx: (array([0, 1, 3, 4, 5, 6]), array([2, 7]))
------------------------------
KFold result:
train idx: 0, val idx: (array([0, 1, 2, 4, 5, 7]), array([3, 6]))
train idx: 1, val idx: (array([0, 1, 3, 5, 6, 7]), array([2, 4]))
train idx: 2, val idx: (array([0, 1, 2, 3, 4, 6]), array([5, 7]))
train idx: 3, val idx: (array([2, 3, 4, 5, 6, 7]), array([0, 1]))
StratifiedKFold方法:官方文档描述,与KFold不同的是,StratifiedKFold对划分的训练集和测试集中保留每个类别的样本百分比;对比KFold来说样本分布中类别更平均,模型测试中反映性能会更加直观。
KFold方法:官方文档描述
split方法:

split方法返回训练集和测试集的数据索引值。

<think>好的,我现在需要帮助用户了解如何在scikit-learn中使用KFold进行交叉验证。首先,我得回顾一下KFold的基本概念。KFold是一种交叉验证方法,将数据集分成K个折(fold),每次用其中K-1折作为训练集,剩下的一折作为测试集,重复K次,确保每一折都当过测试集。 用户提到了示例中的2-fold交叉验证,引用了引用[1]中的代码。我需要确认当前scikit-learn版本中的KFold用法是否有变化。因为注意到示例中的导入语句是`from sklearn.cross_validation import KFold`,但较新的版本中,这个模块可能已经移动到了`sklearn.model_selection`,所以需要更新导入路径。 接下来,用户可能需要一个具体的步骤说明。首先是如何导入KFold,然后是创建KFold实例,指定折数是否打乱数据。然后需要结合实际的机器学习模型,比如使用交叉验证来评估模型性能。可能还需要解释参数,比如`n_splits`代替了旧的`n_folds`,以及`shuffle``random_state`参数的作用。 另外,用户可能想知道KFold其他交叉验证方法区别,比如ShuffleSplit,这在引用[2]中提到过。可能需要简要说明KFold是分块不重叠,而ShuffleSplit允许更灵活的比例控制。 然后,我需要提供一个完整的代码示例,包括数据准备、模型训练评估。例如,使用iris数据集,应用LogisticRegression,并用cross_val_score计算得分。同时,要指出每个fold的划分情况,确保用户明白数据是如何被分割的。 可能还需要注意版本兼容性问题,比如示例中的旧代码是否需要调整,并提醒用户根据自己安装的scikit-learn版本修改导入语句。此外,是否需要打乱数据,特别是在分类任务中保持类别分布的问题,可以提及StratifiedKFold。 最后,生成相关问题,帮助用户进一步学习,比如参数调整、与其他方法的比较、处理数据不平衡等。</think>在`scikit-learn`中使用KFold进行交叉验证主要分为三个步骤:导入类、创建实例、结合模型评估。以下是具体操作说明示例: ### 一、基础使用步骤 1. **导入KFold类** ```python # 注意新版本导入路径(旧版sklearn.cross_validation已弃用) from sklearn.model_selection import KFold ``` 2. **创建KFold实例** ```python kf = KFold(n_splits=5, # 指定折数 shuffle=True, # 是否打乱数据顺序 random_state=42) # 随机种子 ``` 3. **结合模型使用** ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score model = LogisticRegression() scores = cross_val_score(model, X, y, cv=kf) print(f"交叉验证准确率: {scores.mean():.2f} (+/- {scores.std():.2f})") ``` ### 二、完整示例(鸢尾花数据集) ```python from sklearn.datasets import load_iris from sklearn.model_selection import KFold # 加载数据 X, y = load_iris(return_X_y=True) # 创建5折交叉验证器 kf = KFold(n_splits=5, shuffle=True, random_state=42) # 查看数据划分 for fold_num, (train_idx, test_idx) in enumerate(kf.split(X), 1): print(f"Fold {fold_num}:") print(f" 训练集样本数: {len(train_idx)}, 测试集样本数: {len(test_idx)}") print(f" 测试样本索引: {test_idx}\n") ``` ### 三、关键参数说明 | 参数 | 说明 | 推荐设置 | |------|------|----------| | n_splits | 数据集划分的折数 | 通常5或10折 | | shuffle | 分割前是否打乱数据顺序 | 时序数据应设为False | | random_state | 随机数种子 | 固定值保证可重复性 | ### 四、注意事项 1. 分类任务建议使用`StratifiedKFold`保持类别比例[^2] 2. 时序数据应使用`TimeSeriesSplit`防止未来信息泄露 3. 使用`cross_val_score`时,数据预处理器应放入Pipeline中 ```python # 带数据预处理的正确用法示例 from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler pipeline = make_pipeline(StandardScaler(), LogisticRegression()) scores = cross_val_score(pipeline, X, y, cv=kf) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值