矩阵论(补充知识):特征多项式的展开式

本文介绍了矩阵特征多项式的展开式,详细阐述了n阶矩阵A的特征多项式系数与主子式的关联。定理指出,特征多项式中n-k次项系数为k阶主子式之和的(-1)^k倍。文中通过两种方法证明这一定理,包括列正规代换式展开和复合阵矩阵的性质,并提供了相关文献参考。
摘要由CSDN通过智能技术生成

国内线性代数教材上关于n阶矩阵 A A A的特征多项式的系数只讲了常数项、n-1次项和n次项的,分别为 ( − 1 ) n d e t ( A ) , − t r ( A ) , 1 (-1)^ndet(A),-tr(A),1 (1)ndet(A),tr(A),1。一直很好奇其他项的系数是什么样的。查资料知有如下定理:

  • 定理:设 A ∈ C n × n A\in C^{n\times n} ACn×n,则 A A A的特征多项式 d e t ( λ I − A ) = λ n + a 1 λ n − 1 + a 2 λ n − 2 + . . . + a n − 1 λ + a n det(\lambda I-A)=\lambda^n+a_1\lambda^{n-1}+a_2\lambda^{n-2}+...+a_{n-1}\lambda+a_n det(λIA)=λn+a1λn1+a2λn2+...+an1λ+an,其中 n − k n-k nk次项的系数 a k = ( − 1 ) k p k a_k=(-1)^kp_k ak=(1)kpk p k p_k pk A A A的全部 k k k阶主子式之和

其中,主子式的定义如下:

  • 定义:主子式:设 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 1 ⩽ i 1 < i 2 < ⋯ < i k ⩽ n 1\leqslant i_1\lt i_2\lt \cdots \lt i_k\leqslant n 1i1<i2<<ikn,称 A ( i 1 i 2 ⋯ i k i 1 i 2 ⋯ i k ) = [ a i 1 i 1 a i 1 i 2 ⋯ a i 1 i k a i 2 i 1 a i 2 i 2 ⋯ a i 2 i k ⋯ ⋯ ⋯ ⋯ a i k i 1 a i k i 2 ⋯ a i k i k ] A\begin{pmatrix}i_1&i_2&\cdots&i_k\\i_1&i_2&\cdots&i_k\end{pmatrix}=\begin{bmatrix}a_{i_1i_1}&a_{i_1i_2}&\cdots&a_{i_1i_k}\\a_{i_2i_1}&a_{i_2i_2}&\cdots&a_{i_2i_k}\\\cdots&\cdots&\cdots&\cdots\\a_{i_ki_1}&a_{i_ki_2}&\cdots&a_{i_ki_k}\end{bmatrix} A(i1i1i2i2ikik)=ai1i1ai2i1aiki1ai1i2ai2i2aiki2ai1ikai2ikaikik为A的一个k阶主子矩阵,其行列式为A的k阶主子式
    【注】主子式的一个重要特点是取 A A A中的哪几行,就得对应地取 A A A中的哪几列,这样行列相交处的元素取出来才是一个主子式。例如 A A A的一阶主子式有n个,均为 A A A的主对角线上的元素, A A A n n n阶主子式只有1个,为 d e t ( A ) det(A) det(A)

知道这个定理,应用是没问题的,但要知道怎么证,就有点麻烦了。用google搜了半天,没找到一个既正确又容易看懂的证明,最后没想到用百度搜到了几个国内学者的证明,比较简明易懂。下面用两种方法证明该定理。

(这里补充一个显而易见的推论)

  • 推论:设 A ∈ C n × n A\in C^{n\times n} ACn×n,则 d e t ( λ I + A ) = λ n + p 1 λ n − 1 + p 2 λ n − 2 + . . . + p n − 1 λ + p n det(\lambda I+A)=\lambda^n+p_1\lambda^{n-1}+p_2\lambda^{n-2}+...+p_{n-1}\lambda+p_n det(λI+A)=λn+p1λn1+p2λn2+...+pn1λ+pn,其中 n − k n-k nk次项的系数 p k p_k pk A A A的全部 k k k阶主子式之和
    证明:
    由上述定理可得, d e t ( λ I + A ) = d e t ( λ I − ( − A ) ) = λ n + a 1 λ n − 1 + a 2 λ n − 2 + . . . + a n − 1 λ + a n = λ n + ( − 1 ) 1 ( − 1 ) 1 p 1 λ n − 1 + ( − 1 ) 2 ( − 1 ) 2 p 2 λ n − 2 + . . . + ( − 1 ) n − 1 ( − 1 ) n − 1 p n − 1 λ + a n = λ n + p 1 λ n − 1 + p 2 λ n − 2 + . . . + p n − 1 λ + p n \begin{aligned}det(\lambda I +A)&=det(\lambda I-(-A))\\&=\lambda^n+a_1\lambda^{n-1}+a_2\lambda^{n-2}+...+a_{n-1}\lambda+a_n\\&=\lambda^n+(-1)^1(-1)^1p_1\lambda^{n-1}+(-1)^2(-1)^2p_2\lambda^{n-2}+...+(-1)^{n-1}(-1)^{n-1}p_{n-1}\lambda+a_n\\&=\lambda^n+p_1\lambda^{n-1}+p_2\lambda^{n-2}+...+p_{n-1}\lambda+p_n\end{aligned} det(λI+A)
  • 23
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值