特征多项式及Cayley-Hamilton定理

大佬blog大佬blog大佬blog学数学的时候,可能会接触到一个叫做特征根法,特征根方程的东西,当时不觉明历。实际上这是和线性代数中的特征多项式离不开的。学OI的时候,可能会接触到矩阵快速幂求解常系数齐次线性递推的东西,懂了但是只会当模板用。实际上这也和特征多项式有着紧密的联系。言归正传。特征多项式是指对一个nnn阶(转移)方阵AAA , f(λ)=det⁡(λE−A)=λN+b...
摘要由CSDN通过智能技术生成

大佬blog
大佬blog
大佬blog
大佬blog
上面的都没有证明
学数学的时候,可能会接触到一个叫做特征根法,特征根方程的东西,当时不觉明历(应该是不明觉厉)。
实际上这是和线性代数中的特征多项式离不开的。
学OI的时候,可能会接触到矩阵快速幂求解常系数齐次线性递推的东西,懂了但是只会当模板用。
实际上这也和特征多项式有着紧密的联系。
言归正传。
特征多项式是指对一个 n n n阶(转移)方阵 A A A , f ( λ ) = det ⁡ ( λ I − A ) = λ N + b 1 λ N − 1 + b 2 λ N − 2 + . . . + b N − 1 λ + b N f(\lambda) = \det(\lambda I-A) = \lambda^N+b_1\lambda^{N-1}+b_2\lambda^{N-2}+...+b_{N-1}\lambda+b_N f(λ)=det(λIA)=λN+b1λN1+b2λN2+...+bN1λ+bN是一个以 λ \lambda λ为自变量的 n n n次多项式。
Cayley-Hamilton定理指的是 f ( A ) = 0 = A N + b 1 A N − 1 + b 2 A N − 2 + . . . + b N − 1 A + b N f(A) = 0 = A^N+b_1A^{N-1}+b_2A^{N-2}+...+b_{N-1}A+b_N f(A)=0=AN+b1AN1+b2AN2+...+bN1A+bN为化零多项式。为了方便记忆有一个著名的伪证: f A ( A ) = ∣ A − A I ∣ = 0 f_A(A)=∣A−AI∣=0 fA(A)=AAI=0

初中证法:
( λ I − A ) − 1 = a d j ( λ I − A ) ∣ λ I − A ∣ ( a d j 为 伴 随 矩 阵 ) (\lambda I - A) ^ {-1} = \frac {adj(\lambda I - A)}{|\lambda I - A|}(adj为伴随矩阵) (λIA)1=λIAadj(λIA)(adj矩</

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值