原地址:http://blog.csdn.net/niuwei22007/article/details/49231271可以查看更多文章
基本的使用情况差不多介绍的差不多了,我也是边学习边写博客,其中难免有很多理解错误的地方或者理解不到位的地方,还请各位博友多多指点。
介绍完了使用,就应该自己动手去实践了,因此,这里再介绍一下实验数据的问题。Keras提供了常用的几种数据集的下载,可以直接拿来用,非常方便。下面我们来看一下。
一、CIFAR10小图分类
keras.datasets.cifar10
CIFAR10数据集包含有5万张32*32的训练彩色图,共标记了超过10个分类;还有1万张测试图片。
使用代码:
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
返回: 2个元组
- X_train, X_test : 每个元素是一个uint8类型(0~255),代表RGB图像数据的每个像素值。其shape是(nb_samples, 3, 32, 32),nb_samples是样本数量。整体意思就是nb_samples张图片,每张图片有3个通道(代表RGB),每个通道数据包含一个32*32的像素值矩阵。
- y_train, y_test: 每个元素是一个uint8类型,代表分类编号(0-9),其shape是(nb_samples, ),就是只有一个列向量,每个值表示对应样本的分类标号。

本文介绍了Keras中用于深度学习的数据集,包括CIFAR10和CIFAR100的小图分类,IMDB的影评情感分析,新闻主题分类以及MNIST的手写数字识别。通过代码示例展示了如何加载和使用这些数据集。
最低0.47元/天 解锁文章
1331

被折叠的 条评论
为什么被折叠?



