暑假研习系列:线、面SLAM从零入门(二)

二、空间直线的表述

1. 空间直线的参数化
  1. 零空间与生成子空间表示

    该种表示方法是一种过参数表示,用8个参数表示4自由度的直线。个人直观的理解为:不重合且以齐次表示的两个点之间的连线

    表述方式为: L 2 × 4 : = [ X 1 T X 2 T ] = [ X 1 ~ 1 X 2 ~ 1 ] = [ u 1 v 1 w 1 1 u 2 v 2 w 2 1 ] L_{2\times4}:=\begin{bmatrix}X_1^T\\X_2^T\end{bmatrix}=\begin{bmatrix}\widetilde{X_1} & 1\\ \widetilde{X_2} &1\end{bmatrix}=\begin{bmatrix} u_1&v_1&w_1& 1\\u_2&v_2&w_2&1\end{bmatrix} L2×4:=[X1TX2T]=[X1 X2 11]=[u1u2v1v2w1w211]

    另外,关于[12]中生成空间的表述部分没有看懂,我个人以为应该不影响。

  2. Plucker(普吕克)矩阵表述

    该种表示方法尽管用16个参数表示4自由度的直线,但是仅有6个非零元素,除去齐次的一个自由度,又因为满足行列式为零,所以自由度为4。[12]疑问:满足行列式为零不属于一个约束条件吗?为什么能够去除自由度?该表述是否可以无约束优化?

    表述方法为: L : = X 1 X 2 T − X 2 X 1 T L:=X_1X_2^T-X_2X_1^T L:=X1X2TX2X1T。L为4x4的齐次反对称阵,其秩为2,并且L与定义它的两点无关。

    • 给定从世界坐标系c到相机w的变换矩阵 T c w = [ R c w t c w 0 1 ] T_{cw}= \begin{bmatrix} R_{cw} & t_{cw} \\ 0 & 1 \end{bmatrix} Tcw=[Rcw0tcw1],通过下述公式将Plucker矩阵进行变换:
      L c = T c w L w T c w T L_c=T_{cw}L_wT_{cw}^T Lc=TcwLwTcwT

    • Plucker矩阵与Plucker直线坐标的转换: L 4 × 4 = [ [ d ] ^ l − l T 0 ] L_{4\times 4}=\begin{bmatrix} [d]^{\hat{\quad}} & {l} \\ {-{l}^T} & 0 \end{bmatrix} L4×4=[[d]^lTl0]

  3. Plucker直线坐标表示

    该种表示方法是一种过参数表示,用6个参数表示4自由度的直线,是Plucker矩阵中六个非零元素的排列 l 12 : l 13 : l 14 : l 23 : l 42 : l 34 l_{12}:l_{13}:l_{14}:l_{23}:l_{42}:l_{34} l12:l13:l14:l23:l42:l34。我个人直观上理解,就是LSR中定义的那两个线的方向及线的垂直方向

    表述方式为: L : = ( l ‾ , d ) T = [ X ~ 2 × X ~ 1 X ~ 2 − X ~ 1 ] L:= (\overline {l},d)^T=\begin{bmatrix}\widetilde{X}_2\times \widetilde{X}_1\\\widetilde{X}_2-\widetilde{X}_1\end{bmatrix} L:=(l,d)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值