SLAM数据集的轨迹对齐与结果评估
SLAM是一个系统工程,最终的结果是一个实时的地图,因此我们需要对轨迹进行对齐和比对。在深蓝SLAM课程中,提供了ICP对齐的思路,来估计实际与模型的结果偏差。一些常见的数据集,如KITTI,TUM等,也提供了对齐工具和思路。
(1) tum数据集
1. 单目
-
建立评估文件夹,将得到的KeyFrameTrajectory.txt与数据集里面的groundtruth.txt文件拷贝至评估文件夹下
-
下载evaluate_ate.py,evaluate_rpe.py
官网介绍这两个文件区别和联系:
After estimating the camera trajectory of the Kinect and saving it to a file, we need to evaluate the error in the estimated trajectory by comparing it with the ground-truth. There are different error metrics. Two prominent methods is the absolute trajectory error (ATE) and the relative pose error (RPE). The ATE is well-suited for measuring the performance of visual SLAM systems. In contrast, the RPE is well-suited for measuring the drift of a visual odometry system, for example the drift per second.
即,ate适用于检测整体的表现,rpe适用于展示不同计量单位下的漂移情况
-
官网上有这两个文件的详细调用方式,这里提供一种最常用的:
python2 evaluate_ate.py --save alignedTrajectory_ate.txt --plot ate.png groundtruth.txt KeyFrameTrajectory.txt python2 evaluate_rpe.py --fixed_delta --delta_unit s --save aligne