ESL4.4 逻辑斯蒂回归(logistic回归)学习笔记

4.4 逻辑斯蒂回归

这是一篇有关《统计学习基础》,原书名The Elements of Statistical Learning的学习笔记,该书学习难度较高,有很棒的学者将其翻译成中文并放在自己的个人网站上,翻译质量非常高,本博客中有关翻译的内容都是出自该学者的网页,个人解读部分才是自己经过查阅资料和其他学者的学习笔记,结合个人理解总结成的原创内容。
有关ESL更多的学习笔记的markdown文件,可在作者GitHub上查看下载。

原文 The Elements of Statistical Learning
翻译 szcf-weiya
时间 2018-08-21
注解 Hytn Chen
更新 2020-02-26

翻译原文

逻辑斯蒂回归来自用 x x x 的线性函数来建立 K K K 个类别后验概率模型的需要,同时保证后验概率的和为 1 且每一个都落在 [ 0 , 1 ] [0,1] [0,1].模型有如下形式

log ⁡ Pr ⁡ ( G = 1 ∣ X = x ) Pr ⁡ ( G = K ∣ X = x ) = β 10 + β 1 T x log ⁡ Pr ⁡ ( G = 2 ∣ X = x ) Pr ⁡ ( G = K ∣ X = x ) = β 20 + β 2 T x … log ⁡ Pr ⁡ ( G = K − 1 ∣ X = x ) Pr ⁡ ( G = K ∣ X = x ) = β ( K − 1 ) 0 + β K − 1 T x (4.17) \begin{aligned} \log\dfrac{\Pr(G=1\mid X=x)}{\Pr(G=K\mid X=x)}&=\beta_{10}+\beta_1^Tx\\ \log\dfrac{\Pr(G=2\mid X=x)}{\Pr(G=K\mid X=x)}&=\beta_{20}+\beta_2^Tx\\ &\ldots\\ \log\dfrac{\Pr(G=K-1\mid X=x)}{\Pr(G=K\mid X=x)}&=\beta_{(K-1)0}+\beta_{K-1}^Tx\\ \end{aligned} \tag{4.17} logPr(G=KX=x)Pr(G=1X=x)logPr(G=KX=x)Pr(G=2X=x)logPr(G=KX=x)Pr(G=K1X=x)=β10+β1Tx=β20+β2Tx=β(K1)0+βK1Tx(4.17)

模型由 K − 1 K-1 K1 个 log-odds 或 logit 变换来确定(反映了概率之和为 1 的约束).虽然模型采用最后一类来作为 odds-ratios 的分母,但分母的选择其实是任意的,因为在这个选择下估计值是等价的.简单地计算可以得到

Pr ⁡ ( G = k ∣ X = x ) = exp ⁡ ( β k 0 + β k T x ) 1 + ∑ ℓ = 1 K − 1 exp ⁡ ( β ℓ 0 + β ℓ T x )    k = 1 , … , K − 1 Pr ⁡ ( G = K ∣ X = x ) = 1 1 + ∑ ℓ = 1 K − 1 exp ⁡ ( β ℓ 0 + β ℓ T x ) (4.18) \begin{aligned} \Pr(G=k\mid X=x)&=\dfrac{\exp(\beta_{k0}+\beta_k^Tx)}{1+\sum\limits_{\ell=1}^{K-1}\exp(\beta_{\ell0}+\beta_\ell^Tx)} \; k=1,\ldots, K-1\\ \Pr(G=K\mid X=x)&=\dfrac{1}{1+\sum\limits_{\ell=1}^{K-1}\exp(\beta_{\ell0}+\beta_\ell^Tx)} \end{aligned} \tag{4.18} Pr(G=kX=x)Pr(G=KX=x)=1+=1K1exp(β0+βTx)exp(βk0+βkTx)k=1,,K1=1+=1K1exp(β0+βTx)1(4.18)

显然它们相加等于 1.为了强调对参数集 θ = { β 10 , β 1 T , … , β ( K − 1 ) 0 , β K − 1 T } \theta=\{ {\beta_{10},\beta_1^T,\ldots,\beta_{(K-1)0},\beta_{K-1}^T}\} θ={ β10,β1T,,β(K1)0,βK1T} 的依赖,我们将概率记为 p k ( x , θ ) p_k(x,\theta) pk(x,θ)

K = 2 K=2 K=2 时,模型非常简单,因为只有一个单线性函数.在生物统计应用中应用很广,因为经常会有二进制(两个类别)的响应变量.举个例子,病人获救或死亡,患心脏病和不患心脏病,或者某个条件存在与否.

个人解读

证明从式 ( 4.17 ) (4.17) (4.17)如何推导得到式 ( 4.18 ) (4.18) (4.18)

首先对式 ( 4.17 ) (4.17) (4.17)等式两边取指数,可得
Pr ⁡ ( G = 1 ∣ X = x ) = Pr ⁡ ( G = K ∣ X = x ) exp ⁡ ( β 10 + β 1 T x ) Pr ⁡ ( G = 2 ∣ X = x ) = Pr ⁡ ( G = K ∣ X = x ) exp ⁡ ( β 20 + β 2 T x ) ⋮ Pr ⁡ ( G = K − 1 ∣ X = x ) = Pr ⁡ ( G = K ∣ X = x ) exp ⁡ ( β ( K − 1 ) 0 + β ( K − 1 ) T x ) \begin{aligned} \operatorname{Pr}(G=1 | X=x) &=\operatorname{Pr}(G=K | X=x) \exp \left(\beta_{10}+\beta_{1}^{T} x\right) \\ \operatorname{Pr}(G=2 | X=x) &=\operatorname{Pr}(G=K | X=x) \exp \left(\beta_{20}+\beta_{2}^{T} x\right) \\ & \vdots \\ \operatorname{Pr}(G=K-1 | X=x) &=\operatorname{Pr}(G=K | X=x) \exp \left(\beta_{(K-1) 0}+\beta_{(K-1)}^{T} x\right) \end{aligned} Pr(G=1X=x)Pr(G=2X=x)Pr(G=K1X=x)=Pr(G=KX=x)exp(β10+β1Tx)=Pr(G=KX=x)exp(β20+β2Tx)=Pr(G=KX=x)exp(β(K1)0+β(K1)Tx)
将上面所有式子都累加,并且默认当x确定的情况下K个类概率之和为1(类与类互斥),可得
Pr ⁡ ( G = K ∣ X = x ) ( 1 + ∑ l = 1 K − 1 exp ⁡ ( β l 0 + β l T x ) ) = 1 \operatorname{Pr}(G=K | X=x)\left(1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+\beta_{l}^{T} x\right)\right)=1 Pr(G=KX=x)(1+l=1K1exp(βl0+βlTx))=1
由此解得第K类的条件概率,将该式逐个代入上式,即可依次解得每个类的概率
Pr ⁡ ( G = k ∣ X = x ) = exp ⁡ ( β k 0 + β k T x ) 1 + ∑ ℓ = 1 K − 1 exp ⁡ ( β ℓ 0 + β ℓ T x ) \Pr(G=k\mid X=x)=\dfrac{\exp(\beta_{k0}+\beta_k^Tx)}{1+\sum\limits_{\ell=1}^{K-1}\exp(\beta_{\ell0}+\beta_\ell^Tx)} Pr(G=kX=x)=1+=1K1exp(β0+βTx)exp(βk0+βkTx)

拟合逻辑斯蒂回归模型

逻辑斯蒂回归经常通过极大似然法求解,采用在给定 X X X G G G 的条件概率.因为 Pr ⁡ ( G ∣ X ) \Pr(G\mid X) Pr(GX) 完全明确了条件分布,选择 多项式分布 (multinomial) 是合适的&

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值