一 代码实现
import torch
import torchvision
def main():
# 模型结构加载
model = torchvision.models.resnet50()
# 修改层结构:输入图像为6通道,10个类
# model.conv1 = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# model.fc = nn.Linear(in_features=2048, out_features=10, bias=True)
# 加载本地训练权重/
# pre_trained = 'model/resnet50.pth'
# pre_trained_dict = torch.load(pre_trained, map_location='cpu')
# model.load_state_dict(pre_trained_dict)
# 保证 BN 层能够用 全部训练数据 的均值和方差,即测试过程中要保证 BN 层的均值和方差不变
model.eval()
# 当前计算不需要反向传播
with torch.no_grad():
batch_size = 8
# 按照标准正态分布生成模型输入数据
dummy_input = torch.randn(batch_size,3,224,224)
# 为了确保在推理过程中有不同批次的数据输入,这里设置动态尺寸 batch_size
# 输入和输出的第 0 维度可以是动态,即 batch_size
dynamic_axes = {'image': {0: 'batch_size'},
'class': {0: 'batch_size'}}
# model : 模型
# dummy_input: 输入
# output_file_path : ONNX保存路径
# input_names: 输入节点名称
# output_names: 输出节点名称
output_file_path = "E:\\分类\\resnet50.onnx"
torch.onnx.export(model, dummy_input, output_file_path,
verbose=True, input_names=['image'], output_names=['class'],
dynamic_axes=dynamic_axes)
if __name__ == '__main__':
main()
二 结构分析
在网址https://netron.app/打开 resnet50.onnx