|行业洞察·案例分享|《TikTok For Business营销通案》

报告的核心内容:

  1. TikTok平台介绍:TikTok被描述为一个由创造力主宰的世界,鼓励用户释放创意自由,成为创作者,并分享他们的声音和想法。

  2. 全球增长和影响力:TikTok在全球范围内快速增长,2020年成为全球下载量榜首的应用,尤其在美国、俄罗斯、沙特阿拉伯、印度尼西亚、巴西和英国等地。

|趋势洞察库| 关注我 主页个人介绍 查看完整报告

  1. 用户行为:TikTok用户不仅被动观看内容,还主动分享和创作视频,平台全天候全场景覆盖,激发创意。

  1. 年轻消费者:TikTok吸引了大量年轻用户,他们的消费能力预计在2021年达到3万亿美元,这个群体更愿意分享新品牌,通过购买产品融入社群,且容易被品牌广告触发购买行为。

  2. 全平台产品矩阵:TikTok For Business提供了全平台产品矩阵,包括资讯应用系列广告位和Pangle版位介绍,后者提供多种广告样式,如激励视频广告、插播视频广告、原生广告和Banner广告。

  3. 营销解决方案:TikTok提供了多种营销解决方案,包括品牌贴纸、品牌挑战赛、TopView、信息流广告和开屏广告等,以建立品牌与用户之间的深层关联。

|趋势洞察库| 关注我 主页个人介绍 查看完整报告

  1. 客户成功故事:分享了几个成功的营销案例,如Playa Games的新游戏推广、Yubo的社交应用增长、eBay的中小企业助力活动、Samsung Galaxy S10+的发布推广和ETUDE的电商落地页推广。

  2. 广告政策和审核:介绍了TikTok广告的政策限制、审核注意事项和常见审核不通过的原因。

  3. 选品和市场:讨论了TikTok选品的客单价建议和海外营销的主要阵地。

  1. 广告投放:详细说明了在TikTok上投放广告的步骤,包括开户、安装像素、设置推广系列和广告组、创建广告、平台审核和广告投放。

  1. 视频内容方向:强调了视频内容应从娱乐化角度出发,融入当地文化元素,以吸引年轻用户。

|趋势洞察库| 关注我 主页个人介绍 查看完整报告

  1. 转化率和效果调整:提供了关于TikTok投放独立站转化率的信息,以及转化效果不佳时的调整建议。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

趋势洞察库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值