SVD(奇异值分解)记录

转载自https://www.cnblogs.com/endlesscoding/p/10033527.html

奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助。

1、特征值分解(EVD)

实对称矩阵

在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵A是一个m×m的实对称矩阵(即A=A^{_{T}}),那么它可以被分解成如下的形式:

其中Q为标准正交阵,即有QQ^{T}=I,Σ为对角矩阵,且上面的矩阵的维度均为m×m。λi称为特征值,qi是Q(特征矩阵)中的列向量,称为特征向量

一般矩阵

上面的特征值分解,对矩阵有着较高的要求,它需要被分解的矩阵A为实对称矩阵,但是现实中,我们所遇到的问题一般不是实对称矩阵。那么当我们碰到一般性的矩阵,即有一个m×n的矩阵A,它是否能被分解成上式的形式呢?当然是可以的,这就是我们下面要讨论的内容。

2、奇异值分解(SVD)

2.1 奇异值分解定义

有一个m×n的实数矩阵A,我们想要把它分解成如下的形式

A=U \Sigma V^{T}

其中U和V均为单位正交阵,即有UU^{T}=IVV^{T}=I,U称为左奇异矩阵,V称为右奇异矩阵,Σ仅在主对角线上有值,我们称它为奇异值,其它元素均为0。上面矩阵的维度分别为U\in R^{m\times m}\Sigma \in R^{m\times n}V \in R^{n\times n}

一般地Σ有如下形式

 对于奇异值分解,我们可以利用上面的图形象表示,图中方块的颜色表示值的大小,颜色越浅,值越大。对于奇异值矩阵ΣΣ,只有其主对角线有奇异值,其余均为0。

2.2 奇异值求解

正常求上面的U,V,Σ不便于求,我们可以利用如下性质

 3、奇异值分解应用

在图像压缩中的应用

SVD(Python)

这里暂时用numpy自带的svd函数做图像压缩。

①读取图片

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img_eg = mpimg.imread("../img/beauty.jpg")
print(img_eg.shape)

图片的大小是600×400×3600×400×3

②奇异值分解

img_temp = img_eg.reshape(600, 400 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

我们先将图片变成600×1200600×1200,再做奇异值分解。从svd函数中得到的奇异值sigma它是从大到小排列的。

③取前部分奇异值重构图片

# 取前60个奇异值
sval_nums = 60
img_restruct1 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct1 = img_restruct1.reshape(600,400,3)

# 取前120个奇异值
sval_nums = 120
img_restruct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct2 = img_restruct2.reshape(600,400,3)

将图片显示出来看一下,对比下效果

fig, ax = plt.subplots(1,3,figsize = (24,32))

ax[0].imshow(img_eg)
ax[0].set(title = "src")
ax[1].imshow(img_restruct1.astype(np.uint8))
ax[1].set(title = "nums of sigma = 60")
ax[2].imshow(img_restruct2.astype(np.uint8))
ax[2].set(title = "nums of sigma = 120")

fig svd_note2.png

可以看到,当我们取到前面120个奇异值来重构图片时,基本上已经看不出与原图片有多大的差别。

总结

从上面的图片的压缩结果中可以看出来,奇异值可以被看作成一个矩阵的代表值,或者说,奇异值能够代表这个矩阵的信息。当奇异值越大时,它代表的信息越多。因此,我们取前面若干个最大的奇异值,就可以基本上还原出数据本身。

如下,可以作出奇异值数值变化和前部分奇异值和的曲线图,如下图所示

 fig svd_note3.svg

从上面的第1个图,可以看出,奇异值下降是非常快的,因此可以只取前面几个奇异值,便可基本表达出原矩阵的信息。从第2个图,可以看出,当取到前100个奇异值时,这100个奇异值的和已经占总和的95%左右。

最后,还有一点需要提到的是,如果自己想不调用np.linalg.svd函数,手动实现奇异值分解的话,单纯利用第2小节的内容实现,有点不够,有个问题需要注意。这里暂时不多做讨论了,大家有兴趣可以看我下面分享的《SVD(奇异值分解)Python实现》,重点可以看看其中SVD算法实现

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值