8个常用泰勒公式

8个常用泰勒公式:

sin ⁡ x = x − 1 6 x 3 + O ( x 3 ) arcsin ⁡ x = x + 1 6 x 3 + O ( x 3 ) \sin x=x-\frac{1}{6} x^{3}+O\left(x^{3}\right) \quad \arcsin x=x+\frac{1}{6} x^{3}+O\left(x^{3}\right) sinx=x61x3+O(x3)arcsinx=x+61x3+O(x3)

cos ⁡ x = 1 − 1 2 x 2 + x 4 4 ! + 0 ( x 4 ) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + O ( x 3 ) \cos x=1-\frac{1}{2} x^{2}+\frac{x^{4}}{4 !}+0\left(x^{4}\right) \quad \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+O(x^{3}) cosx=121x2+4!x4+0(x4)ln(1+x)=x21x2+31x3+O(x3)

tan ⁡ x = x + 1 3 x 3 + O ( x 3 ) arctan ⁡ x = x − 1 3 x 3 + O ( x 3 ) \tan x=x+\frac{1}{3} x^{3}+O( x^{3}) \quad \arctan x=x-\frac{1}{3} x^{3}+O\left(x^{3}\right) tanx=x+31x3+O(x3)arctanx=x31x3+O(x3)

e x = 1 + x + 1 2 x 2 + 1 6 x 3 + 0 ( x 3 ) ( 1 + x ) a = 1 + a x + + a ( a − 1 ) 2 ! x 2 + O ( x 2 ) e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+0\left(x^{3}\right) \quad(1+x)^{a}=1+a x++\frac{a(a-1)}{2 !} x^{2}+O\left(x^{2}\right) ex=1+x+21x2+61x3+0(x3)(1+x)a=1+ax++2!a(a1)x2+O(x2)
泰勒公式是等号而不是等价,这就使所有函数转化为幂函数,在利用高阶无穷小被低阶吸收的原理,可以秒杀大部分极限题。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuoyanli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值