论文笔记 COLING 2020|Joint Event Extraction with Hierarchical Policy Network

125 篇文章 15 订阅

1 简介

论文题目:Joint Event Extraction with Hierarchical Policy Network
论文来源:COLING 2020
论文链接:https://aclanthology.org/2020.coling-main.239.pdf

1.1 动机

  • 目前pipeline和joint的事件抽取,都存在冗余的实体-事件对信息,从而带来可能的错误。同时存在错误匹配问题(一个句子中存在多个事件)

1.2 创新

  • 使用policy network做事件抽取
  • 提出了一个分等级(两个)的结构进行联合事件抽取,充分探索了事件抽取子任务之间的深层信息交互,并解决了多个事件和错误匹配问题。

2 背景知识

强化学习包含三个主要概念,环境状态(Environment State),行动(Action),奖励(Reward)。强化学习的目标是获得最多的累计奖励。

3 方法

在这里插入图片描述
模型的整体框架如上图所示,主要分为两个部分:

  1. 事件级别Policy Network:首先计算每个token的状态 s t e s_t^e ste( h t h_t ht为双向LSTM的词编码),然后进行选择 μ ( o t e ∣ s t e ) \mu(o_t^e|s_t^e) μ(oteste),最后计算奖励分数 r t e r_t^e rte(非触发词和触发词之间设置偏差),当全部事件级别的事件选择完成,整个句子的奖励分数为 r t e r e = F 1 ( S ) r_{ter}^e=F_1(S) rtere=F1(S)。具体公式如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 论元级别Policy Network:大致流程和事件级的网络一致,其中定义了事件检索表,可以根据事件的类型压缩论元角色的集合,具体公式如下。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    当前事件状态下全部论元级别的选择完成,最终的奖励分数为:
    在这里插入图片描述

Loss函数如下,对奖励进行累加:
在这里插入图片描述
在这里插入图片描述
使用policy gradient method(参考链接)和REIN FORCE algorithm进行优化:
在这里插入图片描述

4 实验

在ACE2005和TAC2015数据集上的实验效果如下:(使用Stanford CoreNLP toolkit处理数据)
在这里插入图片描述
在多句子情况下的实验效果:
在这里插入图片描述
在触发词和论元都存在出现在训练集和测试集的对比实验效果:
在这里插入图片描述
触发词分类的实验效果与触发词识别接近,进行错误分析的结果如下,
在这里插入图片描述

5 总结

  • 使用强化学习进行事件抽取,可以解决句子中多事件的重叠问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值