论文笔记 EMNLP 2020|Joint Constrained Learning for Event-Event Relation Extraction

125 篇文章 12 订阅
这篇论文介绍了一个创新的联合约束学习模型,用于提高时间关系和子事件关系抽取任务的性能,利用RoBERTa编码上下文、常识知识和对称性/注释约束。研究者在MATRES和HiEve数据集上进行了实验,展示了模型的有效性。
摘要由CSDN通过智能技术生成

1 简介

论文题目:Joint Constrained Learning for Event-Event Relation Extraction
论文来源:EMNLP 2020
论文链接:https://arxiv.org/pdf/2010.06727.pdf
代码链接:https://cogcomp.seas.upenn.edu/page/publication_view/914

1.1 创新

  • 提出一个联合约束学习模型,用于多种事件关系抽取(时间关系、子事件关系),同时提高了两种时间关系抽取任务的指标。
    在这里插入图片描述

2 方法

在这里插入图片描述
文档D表示为一个token序列 D = [ t 1 , . . . , e 1 , . . . , e 2 , . . . , t n ] D=[t_1,...,e_1,...,e_2,...,t_n] D=[t1,...,e1,...,e2,...,tn],其中一些token为注释事件的触发词,目标是抽取时间事件关系(BEFORE, AFTER, EQUAL, VAGUE)和子事件关系(PARENT-CHILD, CHILD-PARENT, COREF,NOREL)。其中模型的整体框架如上图,主要包括下面几部分:

2.1 事件对表示

对事件对进行编码,同时加入常识知识,最后使用两个不同的分类器,得到具体任务的标签。

2.2 上下文事件触发词编码

首先使用RoBERTa进行上下文编码,然后加入one-hot的词性标签,然后通过BiLSTM进行编码,最后对于一个事件对 ( e 1 , e 2 ) (e_1,e_2) (e1,e2),特征包括 e 1 e_1 e1的上下文编码 h e 1 h_{e_1} he1 e 2 e_2 e2的上下文编码 h e 2 h_{e_2} he2、Hadamard product (对应元素相乘)和subtraction。

2.3 常识知识

使用ConceptNet知识,分别为时间关系和子事件关系训练一个MLP编码器,表示常识特征。

2.4 联合约束学习

分为下面三种约束:

  • 注释约束:期望模型的预测满足注释,规则和Loss公式如下:
  • 对称性约束:( e 1 , e 2 e_1,e_2 e1,e2)和( e 2 , e 1 e_2,e_1 e2,e1)应该有相反的关系,规则和Loss公式如下:
  • 联合约束:该约束用于三种相关的事件 e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3,包括下面两种规则,下表表示全部的联合规则:

在这里插入图片描述

总的学习目标如下:
在这里插入图片描述
取得到的最高分数的关系,作为该事件对的关系标签,其中预测子事件关系有更高的优先级。

3 实验

时间关系数据集为MATRES,子事件关系数据集为HiEve,数据统计如下:
在这里插入图片描述

实验结果如下图:
在这里插入图片描述
在这里插入图片描述

消融实验结果如下图:
在这里插入图片描述

在RED数据集上的Case Study:
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值