1 简介
论文题目:Joint Constrained Learning for Event-Event Relation Extraction
论文来源:EMNLP 2020
论文链接:https://arxiv.org/pdf/2010.06727.pdf
代码链接:https://cogcomp.seas.upenn.edu/page/publication_view/914
1.1 创新
- 提出一个联合约束学习模型,用于多种事件关系抽取(时间关系、子事件关系),同时提高了两种时间关系抽取任务的指标。
2 方法
文档D表示为一个token序列
D
=
[
t
1
,
.
.
.
,
e
1
,
.
.
.
,
e
2
,
.
.
.
,
t
n
]
D=[t_1,...,e_1,...,e_2,...,t_n]
D=[t1,...,e1,...,e2,...,tn],其中一些token为注释事件的触发词,目标是抽取时间事件关系(BEFORE, AFTER, EQUAL, VAGUE)和子事件关系(PARENT-CHILD, CHILD-PARENT, COREF,NOREL)。其中模型的整体框架如上图,主要包括下面几部分:
2.1 事件对表示
对事件对进行编码,同时加入常识知识,最后使用两个不同的分类器,得到具体任务的标签。
2.2 上下文事件触发词编码
首先使用RoBERTa进行上下文编码,然后加入one-hot的词性标签,然后通过BiLSTM进行编码,最后对于一个事件对 ( e 1 , e 2 ) (e_1,e_2) (e1,e2),特征包括 e 1 e_1 e1的上下文编码 h e 1 h_{e_1} he1、 e 2 e_2 e2的上下文编码 h e 2 h_{e_2} he2、Hadamard product (对应元素相乘)和subtraction。
2.3 常识知识
使用ConceptNet知识,分别为时间关系和子事件关系训练一个MLP编码器,表示常识特征。
2.4 联合约束学习
分为下面三种约束:
- 注释约束:期望模型的预测满足注释,规则和Loss公式如下:
|
|
- 对称性约束:( e 1 , e 2 e_1,e_2 e1,e2)和( e 2 , e 1 e_2,e_1 e2,e1)应该有相反的关系,规则和Loss公式如下:
|
|
- 联合约束:该约束用于三种相关的事件 e 1 , e 2 , e 3 e_1,e_2,e_3 e1,e2,e3,包括下面两种规则,下表表示全部的联合规则:
|
|
|
|
总的学习目标如下:
取得到的最高分数的关系,作为该事件对的关系标签,其中预测子事件关系有更高的优先级。
3 实验
时间关系数据集为MATRES,子事件关系数据集为HiEve,数据统计如下:
实验结果如下图:
消融实验结果如下图:
在RED数据集上的Case Study: