【深度学习】菜品目标检测软件系统

在这里插入图片描述
深度学习类文章回顾
【YOLO深度学习系列】图像分类、物体检测、实例分割、物体追踪、姿态估计、定向边框检测演示系统【含源码】
【深度学习】物体检测/实例分割/物体追踪/姿态估计/定向边框/图像分类检测演示系统【含源码】
【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示
【深度学习】行人跌倒行为检测软件系统
【深度学习】火灾检测软件系统
【深度学习】吸烟行为检测软件系统
【深度学习】数竹签演示软件系统

本文摘要

摘要:本文主要使用YOLOV8深度学习框架自训练了一个“菜品目标检测模型”,基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。
文中源码文件【获取方式】:关注公众号:利哥AI实例探险, 给公众号发送 “菜品目标检测” 获取下载方式 给公众号发送 “菜品目标检测数据集”
获取数据集下载方式 注意发送的关键词不能错,否则匹配不到对应资源,由于本人能力有限,难免有疏漏之处。
后续计划:会训练特征提取模型,进行菜品的特征提取与比对,菜品注册等。

软件功能演示

【深度学习】菜品目标检测软件系统

环境依赖:

安装ananconda软件,官网地址:https://www.anaconda.com/download
使用conda创建3.9虚拟环境: conda create -n aifood python=3.9
激活虚拟环境: conda activate aifood 或  source activate aifood 
安装依赖
pip install torch==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torchvision==0.14.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pandas==2.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python==4.5.4.58 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install tqdm==4.66.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install PyYAML==6.0.1
pip install matplotlib==3.9.0
pip install seaborn==0.13.2
pip install scipy==1.13.1
pip install tqdm==4.64.1
pip install PyQt5==5.15.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyqt5-tools==5.15.2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

图片/视频检测演示

在这里插入图片描述

摄像头检测演示

【深度学习】菜品目标检测软件系统

模型训练

关于YOLOV8的数据标注及模型训练更详细的内容,可关注我的另一篇文章:【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示,详细记录了这部分内容。

数据集准备与标注

目标检测的数据标注,可以用LabelImg,建议直接下载其可执行程序,而不是通过pip安装使用。
准备了 “菜品目标检测数据集”,用作训练演示。把准备的数据集分为训练和验证两个数据集,一共包含 2600+ 张图片,部分图片如下所示:
在这里插入图片描述
标注数据如下所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型训练&训练结果评估

此部分详细可参考:
【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示

### 基于深度学习的食物识别系统设计与实现 #### 1. 系统概述 基于深度学习的食物识别系统的开发涉及多个技术环节,包括但不限于数据收集、模型选择与训练以及实际部署。通过利用先进的深度学习框架(如YOLO系列),可以显著提高食物识别的速度和准确性[^1]。 #### 2. 数据准备 构建高效的食物识别系统的第一步是获取高质量的数据集。由于不同地区饮食文化的差异,在中国菜品上的识别效果可能不如西餐或日料理想[^2]。因此,可以选择像 FOOD100 这样的公开数据集作为基础资源。这些数据集中包含了易于分类的西方菜肴图像样本,有助于提升初始阶段的模型性能。 为了增强模型泛化能力,还可以采用以下策略来扩充数据: - **数据增广**:通过对原始图片实施旋转、缩放和平移操作增加多样性; - **标注工具**:使用LabelImg或其他自动化标记软件完成大量未处理照片的手动或半自动标签过程; #### 3. 模型架构选取 目前主流的目标检测算法有多种版本可供选用,其中 YOLO (You Only Look Once) 家族因其快速推理能力和良好表现而备受青睐。具体来说: - **YOLOv5**: 提供了简单易用API接口的同时保持较高的预测效率。 - **YOLOv8**: 在前代基础上改进了一些内部机制从而获得更好的平衡点。 每种变体都有其特定应用场景下的优势,开发者应依据项目需求决定最终采纳哪个版本。 #### 4. 训练配置调整 针对特定任务微调预训练权重是非常重要的一步。这通常涉及到以下几个方面参数调节: - 学习率调度器设置; - 批量大小(batch size); - Epoch数量定义; 此外,还需要特别注意正则项系数的选择以防止过拟合现象发生. #### 5. 实际应用案例研究 在某些情况下,除了单纯的食物种类辨别外还附加额外的功能要求比如价格计算等业务逻辑集成进去形成完整的解决方案实例Restauraut+. 此处提到该平台不仅实现了基本视觉感知层面的操作同时也加入了经济价值评估维度即商品定价展示功能. #### 6. 部署考量因素 当完成了实验室环境内的验证之后就要考虑将其迁移到生产环境中去运行了。此时需解决如下几个主要挑战: - 边缘设备兼容性测试; - 性能瓶颈定位及优化措施制定; - 用户界面友好程度保障; ```python import torch from ultralytics import YOLO def load_model(model_path='yolov5s.pt'): model = YOLO(model_path) return model def predict_image(image_path, model): results = model.predict(source=image_path) detections = [] for r in results: boxes = r.boxes.xyxy.cpu().numpy() confidences = r.boxes.conf.cpu().numpy() class_ids = r.boxes.cls.cpu().numpy() for box, confidence, cls_id in zip(boxes, confidences, class_ids): detection = { 'box': list(map(int, box)), 'confidence': float(confidence), 'class_id': int(cls_id)} detections.append(detection) return detections ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

利哥AI实例探险

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值