softmax函数详解及误差反向传播的梯度求导

摘要

本文给出 softmax 函数的定义, 并求解其在反向传播中的梯度

相关

配套代码, 请参考文章 :

Python 和 PyTorch 对比实现 softmax 及其反向传播

系列文章索引 :
https://blog.csdn.net/oBrightLamp/article/details/85067981

正文

1. 定义

softmax函数常用于多分类问题的输出层.
定义如下:
s i = e x i ∑ t = 1 k e x t ∑ t = 1 k e x t = e x 1 + e x 2 + e x 3 + ⋯ + e x k i = 1 , 2 , 3 , ⋯   , k s_{i} = \frac{e^{x_{i}}}{ \sum_{t = 1}^{k}e^{x_{t}}} \\ \quad \\ \sum_{t = 1}^{k}e^{x_{t}} = e^{x_{1}} + e^{x_{2}} +e^{x_{3}} + \cdots +e^{x_{k}}\\ \quad \\ i = 1, 2, 3, \cdots, k si=t=1kextexit=1kext=ex1+ex2+ex3++exki=1,2,3,,k

编程实现softmax函数计算的时候, 因为存在指数运算 e x i e^{x_i} exi, 数值有可能非常大, 导致大数溢出.
一般在分式的分子和分母都乘以一个常数C, 变换成:

s i = C e x i C ∑ t = 1 k e x t = e x i + l o g C ∑ t = 1 k e x t + l o g C = e x i − m ∑ t = 1 k e x t − m m = − l o g C = m a x ( x i ) s_{i} = \frac{Ce^{x_{i}}}{ C\sum_{t = 1}^{k}e^{x_{t}}} = \frac{e^{x_{i} + logC }}{ \sum_{t = 1}^{k}e^{x_{t} + logC}} = \frac{e^{x_{i} - m }}{ \sum_{t = 1}^{k}e^{x_{t} - m}} \\ \quad \\ m = - logC = max(x_{i}) si=Ct=1kextCexi=t=1kext+logCexi+logC=t=1kextmeximm=logC=max(xi)

C的值可自由选择, 不会影响计算结果. 这里 m 取 x i x_i xi 的最大值, 将数据集的最大值偏移至0.

2. 梯度求导

考虑一个 softmax 变换:
x = ( x 1 , x 2 , x 3 , ⋯   , x k ) s = s o f t m a x ( x ) x = (x_1, x_2, x_3, \cdots, x_k)\\ \quad\\ s = softmax(x)\\ x=(x1,x2,x3,,xk)s=softmax(x)
求 s1 对 x1 的导数:
s 1 = e x 1 ∑ t = 1 k e x t = e x 1 s u m s u m = ∑ t = 1 k e x t = e x 1 + ∑ t = 2 k e x t ∂ s u m ∂ x 1 = ∂ ∑ t = 1 k e x t ∂ x 1 = e x 1 ∂ s 1 ∂ x 1 = e x 1 ⋅ s u m − e x 1 ⋅ ∂ s u m ∂ x 1 s u m 2 = e x 1 ⋅ s u m − e x 1 ⋅ e x 1 s u m 2 = s 1 − s 1 2 s_{1} = \frac{e^{x_{1}}}{ \sum_{t = 1}^{k}e^{x_{t}}} = \frac{e^{x_{1}}}{ sum} \\ \quad \\ sum = \sum_{t = 1}^{k}e^{x_{t}} = e^{x_{1}} + \sum_{t = 2}^{k}e^{x_{t}}\\ \quad \\ \frac{\partial sum}{\partial x_{1}} = \frac{\partial \sum_{t = 1}^{k}e^{x_{t}}}{\partial x_{1}} = e^{x_{1}}\\ \quad \\ \frac{\partial s_{1}}{\partial x_{1}} =\frac{e^{x_{1}} \cdot sum -e^{x_{1}}\cdot \frac{\partial sum}{\partial x_{1}}}{sum^{2}}\\ \quad\\ =\frac{e^{x_{1}} \cdot sum -e^{x_{1}} \cdot e^{x_{1}}}{sum^{2}}\\ \quad\\ = s_{1} - s_{1}^{2} \\ s1=t=1kextex1=sumex1sum=

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值